SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sperling RA) "

Sökning: WFRF:(Sperling RA)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhou, XP, et al. (författare)
  • Non-coding variability at the APOE locus contributes to the Alzheimer's risk
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 3310-
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is a leading cause of mortality in the elderly. While the coding change of APOE-ε4 is a key risk factor for late-onset AD and has been believed to be the only risk factor in the APOE locus, it does not fully explain the risk effect conferred by the locus. Here, we report the identification of AD causal variants in PVRL2 and APOC1 regions in proximity to APOE and define common risk haplotypes independent of APOE-ε4 coding change. These risk haplotypes are associated with changes of AD-related endophenotypes including cognitive performance, and altered expression of APOE and its nearby genes in the human brain and blood. High-throughput genome-wide chromosome conformation capture analysis further supports the roles of these risk haplotypes in modulating chromatin states and gene expression in the brain. Our findings provide compelling evidence for additional risk factors in the APOE locus that contribute to AD pathogenesis.
  •  
2.
  •  
3.
  • Bethlehem, RAI, et al. (författare)
  • Brain charts for the human lifespan
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 604:7906, s. 525-
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (http://www.brainchart.io/). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Dubbelman, MA, et al. (författare)
  • Decline in cognitively complex everyday activities accelerates along the Alzheimer's disease continuum
  • 2020
  • Ingår i: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 12:1, s. 138-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundImpairment in daily functioning is a clinical hallmark of dementia. Difficulties with “instrumental activities of daily living” (IADL) seem to increase gradually over the course of Alzheimer’s disease (AD), before dementia onset. However, it is currently not well established how difficulties develop along the preclinical and prodromal stages of AD. We aimed to investigate the trajectories of decline in IADL performance, as reported by a study partner, along the early stages of AD.MethodsIn a longitudinal multicenter study, combining data from community-based and memory clinic cohorts, we included 1555 individuals (mean age 72.5 ± 7.8 years; 50% female) based on availability of amyloid biomarkers, longitudinal IADL data, and clinical information at baseline. Median follow-up duration was 2.1 years. All amyloid-positive participants (n = 982) were classified into the National Institute on Aging–Alzheimer’s Association (NIA-AA) clinical stages ranging from preclinical AD (1) to overt dementia (4+). Cognitively normal amyloid-negative individuals (n = 573) served as a comparison group. The total scores of three study-partner reported IADL questionnaires were standardized.ResultsThe rate of decline in cognitively normal (stage 1) individuals with and without abnormal amyloid did not differ (p = .453). However, from stage 2 onwards, decline was significantly faster in individuals on the AD continuum (B [95%CI] = − 0.32 [− 0.55, − 0.09],p = .007). The rate of decline increased with each successive stage: one standard deviation (SD) unit per year in stage 3 (− 1.06 [− 1.27, − 0.85],p < .001) and nearly two SD units per year in stage 4+ (1.93 [− 2.19, − 1.67],p < .001). Overall, results were similar between community-based and memory clinic study cohorts.ConclusionsOur results suggest that the rate of functional decline accelerates along the AD continuum, as shown by steeper rates of decline in each successive NIA-AA clinical stage. These results imply that incremental changes in function are a meaningful measure for early disease monitoring. Combined with the low-cost assessment, this advocates the use of these functional questionnaires for capturing the effects of early AD-related cognitive decline on daily life.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Rodriguez-Vieitez, E, et al. (författare)
  • Association of cortical microstructure with amyloid-β and tau: impact on cognitive decline, neurodegeneration, and clinical progression in older adults
  • 2021
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:12, s. 7813-7822
  • Tidskriftsartikel (refereegranskat)abstract
    • Noninvasive biomarkers of early neuronal injury may help identify cognitively normal individuals at risk of developing Alzheimer’s disease (AD). A recent diffusion-weighted imaging (DWI) method allows assessing cortical microstructure via cortical mean diffusivity (cMD), suggested to be more sensitive than macrostructural neurodegeneration. Here, we aimed to investigate the association of cMD with amyloid-β and tau pathology in older adults, and whether cMD predicts longitudinal cognitive decline, neurodegeneration and clinical progression. The study sample comprised n = 196 cognitively normal older adults (mean[SD] 72.5 [9.4] years; 114 women [58.2%]) from the Harvard Aging Brain Study. At baseline, all participants underwent structural MRI, DWI, 11C-Pittsburgh compound-B-PET, 18F-flortaucipir-PET imaging, and cognitive assessments. Longitudinal measures of Preclinical Alzheimer Cognitive Composite-5 were available for n = 186 individuals over 3.72 (1.96)-year follow-up. Prospective clinical follow-up was available for n = 163 individuals over 3.2 (1.7) years. Surface-based image analysis assessed vertex-wise relationships between cMD, global amyloid-β, and entorhinal and inferior-temporal tau. Multivariable regression, mixed effects models and Cox proportional hazards regression assessed longitudinal cognition, brain structural changes and clinical progression. Tau, but not amyloid-β, was positively associated with cMD in AD-vulnerable regions. Correcting for baseline demographics and cognition, increased cMD predicted steeper cognitive decline, which remained significant after correcting for amyloid-β, thickness, and entorhinal tau; there was a synergistic interaction between cMD and both amyloid-β and tau on cognitive slope. Regional cMD predicted hippocampal atrophy rate, independently from amyloid-β, tau, and thickness. Elevated cMD predicted progression to mild cognitive impairment. Cortical microstructure is a noninvasive biomarker that independently predicts subsequent cognitive decline, neurodegeneration and clinical progression, suggesting utility in clinical trials.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy