SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Steele Julian A.) "

Sökning: WFRF:(Steele Julian A.)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Osorio, Ana, et al. (författare)
  • DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7×10-3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8×10-3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.
  •  
6.
  •  
7.
  • Kayhanian, Hamzeh, et al. (författare)
  • Homopolymer switches mediate adaptive mutability in mismatch repair-deficient colorectal cancer
  • 2024
  • Ingår i: Nature Genetics. - 1061-4036. ; 56:7, s. 1420 -1433
  • Tidskriftsartikel (refereegranskat)abstract
    • Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown. Here we show that microsatellite instability modulates DNA repair by toggling hypermutable mononucleotide homopolymer runs in MSH6 and MSH3 through stochastic frameshift switching. Spontaneous mutation and reversion modulate subclonal mutation rate, mutation bias and HLA and neoantigen diversity. Patient-derived organoids corroborate these observations and show that MMR homopolymer sequences drift back into reading frame in the absence of immune selection, suggesting a fitness cost of elevated mutation rates. Combined experimental and simulation studies demonstrate that subclonal immune selection favors incremental MMR mutations. Overall, our data demonstrate that MMR-deficient colorectal cancers fuel intratumor heterogeneity by adapting subclonal mutation rate and diversity to immune selection.
  •  
8.
  • Jin, Handong, et al. (författare)
  • It's a trap! on the nature of localised states and charge trapping in lead halide perovskites
  • 2020
  • Ingår i: Materials Horizons. - : Royal Society of Chemistry (RSC). - 2051-6347 .- 2051-6355. ; 7:2, s. 397-410
  • Forskningsöversikt (refereegranskat)abstract
    • The recent surge of scientific interest for lead halide perovskite semiconductors and optoelectronic devices has seen a mix of materials science sub-fields converge on the same "magical" crystal structure. However, this has ultimately shaped some ambiguity in the definitions shared between researchers across different research areas. For example, scientists aiming to decipher the nature of localized states within metal halide perovskites sometimes over simplify the problem, using identifers such as "defects" or "states". Herein, we review the topic of charge carrier trapping within lead halide perovskites, overviewing their causes and influences, as well as specifying their potential resolutions. We assess the popular lead triiodide perovskites for case study and examine the origins of both intrinsic and extrinsic defects leading to charge carrier trapping in performant perovskite-based solar cells, and review the state-of-the-art actions being taken to limit their effects and achieve world-record conversion efficiencies. Finally, we also draw brief comparisons to other emerging lead-free systems and highlight promising optical tools and design principles moving forward.
  •  
9.
  • Li, Shangyu, et al. (författare)
  • Tethered Small-Molecule Acceptors Simultaneously Enhance the Efficiency and Stability of Polymer Solar Cells
  • 2023
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 35
  • Tidskriftsartikel (refereegranskat)abstract
    • For polymer solar cells (PSCs), the mixture of polymer donors and small-molecule acceptors (SMAs) is fine-tuned to realize a favorable kinetically trapped morphology and thus a commercially viable device efficiency. However, the thermodynamic relaxation of the mixed domains within the blend raises concerns related to the long-term operational stability of the devices, especially in the record-holding Y-series SMAs. Here, a new class of dimeric Y6-based SMAs tethered with differential flexible spacers is reported to regulate their aggregation and relaxation behavior. In their polymer blends with PM6, it is found that they favor an improved structural order relative to that of Y6 counterpart. Most importantly, the tethered SMAs show large glass transition temperatures to suppress the thermodynamic relaxation in mixed domains. For the high-performing dimeric blend, an unprecedented open circuit voltage of 0.87 V is realized with a conversion efficiency of 17.85%, while those of regular Y6-base devices only reach 0.84 V and 16.93%, respectively. Most importantly, the dimer-based device possesses substantially reduced burn-in efficiency loss, retaining more than 80% of the initial efficiency after operating at the maximum power point under continuous illumination for 700 h. The tethering approach provides a new direction to develop PSCs with high efficiency and excellent operating stability.
  •  
10.
  • Steele, Julian A., et al. (författare)
  • How to GIWAXS: Grazing Incidence Wide Angle X-Ray Scattering Applied to Metal Halide Perovskite Thin Films
  • 2023
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 13:27
  • Tidskriftsartikel (refereegranskat)abstract
    • The frequency of reports utilizing synchrotron-based grazing incident wide angle X-ray scattering (GIWAXS) to study metal halide perovskite thin films has exploded recently, as this technique has proven invaluable for understanding several structure-property relationships that fundamentally limit optoelectronic performance. The GIWAXS geometry and temporal resolution are also inherently compatible with in situ and operando setups (including ISOS protocols), and a relatively large halide perovskite research community has deployed GIWAXS to unravel important kinetic and dynamic features in these materials. Considering its rising popularity, the aim here is to accelerate the required learning curve for new experimentalists by clearly detailing the underlying analytical concepts which can be leveraged to maximize GIWAXS studies of polycrystalline thin films and devices. Motivated by the vast range of measurement conditions offered, together with the wide variety of compositions and structural motifs available (i.e., from single-crystal and polycrystalline systems, to quantum dots and layered superlatices), a comprehensive framework for conducting effective GIWAXS experiments is outlined for different purposes. It is anticipated that providing a clear perspective for this topic will help elevate the quality of future GIWAXS studies-which have become routine-and provide the impetus required to develop novel GIWAXS approaches to resolve unsettled scientific questions.
  •  
11.
  • Xu, Yan, et al. (författare)
  • Impact of Amine Additives on Perovskite Precursor Aging : A Case Study of Light-Emitting Diodes
  • 2021
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 12:25, s. 5836-5843
  • Tidskriftsartikel (refereegranskat)abstract
    • Amines are widely employed as additives for improving the performance of metal halide perovskite optoelectronic devices. However, amines are well-known for their high chemical reactivity, the impact of which has yet to receive enough attention from the perovskite light-emitting diode community. Here, by investigating an unusual positive aging effect of CH3NH3I/CsI/PbI2 precursor solutions as an example, we reveal that amines gradually undergo N-formylation in perovskite precursors over time. This reaction is initialized by hydrolysis of dimethylformamide in the acidic chemical environment. Further investigations suggest that the reaction products collectively impact perovskite crystallization and eventually lead to significantly enhanced external quantum efficiency values, increasing from similar to 2% for fresh solutions to greater than or similar to 12% for aged ones. While this case study provides a positive aging effect, a negative aging effect is possible in other perovksite systems. Our findings pave the way for more reliable and reproducible device fabrication and call for further attention to underlying chemical reactions within the perovskite inks once amine additives are included.
  •  
12.
  • Yao, Jia, et al. (författare)
  • Fluorinated Perylene-Diimides: Cathode Interlayers Facilitating Carrier Collection for High-Performance Organic Solar Cells
  • 2022
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 34:32
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic solar cells (OSCs) have experienced rapid progress with the innovation of near-infrared (NIR)-absorbing small-molecular acceptors (SMAs), while the unique electronic properties of the SMAs raise new challenges in relation to cathode engineering for effective electron collection. To address this issue, two fluorinated perylene-diimides (PDIs), PDINN-F and PDINN-2F, are synthesized by a simple fluorination method, for application as cathode interlayer (CIL) materials. The two bay-fluorinated PDI-based CILs possess a lower lowest unoccupied molecular orbital (LUMO) energy level of approximate to-4.0 eV, which improves the energy level alignment at the NIR-SMAs (such as BTP-eC9)/CIL for a favorable electron extraction efficiency. The monofluorinated PDINN-F shows higher electron mobility and better improved interfacial compatibility. The PDINN-F-based OSCs with PM6:BTP-eC9 as active layer exhibit an enhanced fill factor and larger short-circuit current density, leading to a high power conversion efficiency (PCE) exceeding 18%. The devices with PDINN-F CIL retain more than 80% of their initial PCE after operating at the maximum power point under continuous illumination for 750 h. This work prescribes a facile, cost-effective, and scalable method for the preparation of stable, high-performance fluorinated CILs, and instilling promise for the NIR-SMAs-based OSCs moving forward.
  •  
13.
  • Zou, Yatao, et al. (författare)
  • Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular additives are widely utilized to minimize non-radiative recombination in metal halide perovskite emitters due to their passivation effects from chemical bonds with ionic defects. However, a general and puzzling observation that can hardly be rationalized by passivation alone is that most of the molecular additives enabling high-efficiency perovskite light-emitting diodes (PeLEDs) are chelating (multidentate) molecules, while their respective monodentate counterparts receive limited attention. Here, we reveal the largely ignored yet critical role of the chelate effect on governing crystallization dynamics of perovskite emitters and mitigating trap-mediated non-radiative losses. Specifically, we discover that the chelate effect enhances lead-additive coordination affinity, enabling the formation of thermodynamically stable intermediate phases and inhibiting halide coordination-driven perovskite nucleation. The retarded perovskite nucleation and crystal growth are key to high crystal quality and thus efficient electroluminescence. Our work elucidates the full effects of molecular additives on PeLEDs by uncovering the chelate effect as an important feature within perovskite crystallization. As such, we open new prospects for the rationalized screening of highly effective molecular additives.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy