SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stephanou E) "

Sökning: WFRF:(Stephanou E)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Kanakidou, M, et al. (författare)
  • Organic aerosol and global climate modelling: a review
  • 2005
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7324. ; 4, s. 1053-1123
  • Forskningsöversikt (refereegranskat)abstract
    • The present paper reviews existing knowledge with regard to Organic Aerosol ( OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol ( SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up- to- date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies.
  •  
11.
  • Otelea, M. R., et al. (författare)
  • The value of fractional exhaled nitric oxide in occupational diseases - a systematic review
  • 2022
  • Ingår i: Journal of Occupational Medicine and Toxicology. - : Springer Science and Business Media LLC. - 1745-6673. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Fractional exhaled nitric oxide (FeNO) is a non-invasive biomarker of respiratory tract inflammation, originally designated to identify eosinophilic airway inflammation and to predict steroid response. The main field of application of this biomarker is asthma, but FeNO has also been used for other allergic and non-allergic pulmonary disorders such as chronic obstructive pulmonary disease, hypersensitivity pneumonitis and interstitial lung disease. A substantial part of respiratory diseases are related to work, and FeNO, a safe and easy measure to conduct, is a potential valid examination in an occupational setting. This systematic review assesses the value of measuring FeNO related to three types of airborne exposures: allergens, irritants, and respiratory particles inhaled during occupational activities. The review covers results from longitudinal and observational clinical studies, and highlights the added value of this biomarker in monitoring effects of exposure and in the diagnostic criteria of occupational diseases. This review also covers the possible significance of FeNO as an indicator of the efficacy of interventions to prevent work-related respiratory diseases. Initially, 246 articles were identified in PUBMED and SCOPUS. Duplicates and articles which covered results from the general population, symptoms (not disease) related to work, non-occupational diseases, and case reports were excluded. Finally, 39 articles contributed to this review, which led to the following conclusions: a) For occupational asthma there is no consensus on the significant value of FeNO for diagnosis, or on the magnitude of change needed after specific inhalation test or occupational exposure at the workplace. There is some consensus for the optimal time to measure FeNO after exposure, mainly after 24 h, and FeNO proved to be more sensitive than spirometry in measuring the result of an intervention. b) For other occupational obstructive respiratory diseases, current data suggests performing the measurement after the work shift. c) For interstitial lung disease, the evaluation of the alveolar component of NO is probably the most suitable.
  •  
12.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy