SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stride E) "

Sökning: WFRF:(Stride E)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mercuri, E., et al. (författare)
  • Safety and effectiveness of ataluren: comparison of results from the STRIDE Registry and CINRG DMD Natural History Study
  • 2020
  • Ingår i: Journal of Comparative Effectiveness Research. - : Becaris Publishing Limited. - 2042-6305 .- 2042-6313. ; 9:5, s. 341-360
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Strategic Targeting of Registries and International Database of Excellence (STRIDE) is an ongoing, multicenter registry providing real-world evidence regarding ataluren use in patients with nonsense mutation Duchenne muscular dystrophy (nmDMD). We examined the effectiveness of ataluren + standard of care (SoC) in the registry versus SoC alone in the Cooperative International Neuromuscular Research Group (CINRG) Duchenne Natural History Study (DNHS), DMD genotype-phenotype/-ataluren benefit correlations and ataluren safety. Patients & methods: Propensity score matching was performed to identify STRIDE and CINRG DNHS patients who were comparable in established disease progression predictors (registry cut-off date, 9 July 2018). Results & conclusion: Kaplan-Meier analyses demonstrated that ataluren + SoC significantly delayed age at loss of ambulation and age at worsening performance in timed function tests versus SoC alone (p <= 0.05). There were no DMD genotype-phenotype/ataluren benefit correlations. Ataluren was well tolerated. These results indicate that ataluren + SoC delays functional milestones of DMD progression in patients with nmDMD in routine clinical practice. ClinicalTrials.gov identifier: NCT02369731. ClinicalTrials.gov identifier: NCT02369731.
  •  
2.
  • Mercuri, E., et al. (författare)
  • Safety and effectiveness of ataluren in patients with nonsense mutation DMD in the STRIDE Registry compared with the CINRG Duchenne Natural History Study (2015-2022): 2022 interim analysis
  • 2023
  • Ingår i: Journal of Neurology. - 0340-5354. ; 270, s. 3896-3913
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveStrategic Targeting of Registries and International Database of Excellence (STRIDE) is an ongoing, international, multicenter registry of real-world ataluren use in individuals with nonsense mutation Duchenne muscular dystrophy (nmDMD) in clinical practice. This updated interim report (data cut-off: January 31, 2022), describes STRIDE patient characteristics and ataluren safety data, as well as the effectiveness of ataluren plus standard of care (SoC) in STRIDE versus SoC alone in the Cooperative International Neuromuscular Research Group (CINRG) Duchenne Natural History Study (DNHS).MethodsPatients are followed up from enrollment for at least 5 years or until study withdrawal. Propensity score matching was performed to identify STRIDE and CINRG DNHS patients who were comparable in established predictors of disease progression.ResultsAs of January 31, 2022, 307 patients were enrolled from 14 countries. Mean (standard deviation [SD]) ages at first symptoms and at genetic diagnosis were 2.9 (1.7) years and 4.5 (3.7) years, respectively. Mean (SD) duration of ataluren exposure was 1671 (56.8) days. Ataluren had a favorable safety profile; most treatment-emergent adverse events were mild or moderate and unrelated to ataluren. Kaplan-Meier analyses demonstrated that ataluren plus SoC significantly delayed age at loss of ambulation by 4 years (p < 0.0001) and age at decline to %-predicted forced vital capacity of < 60% and < 50% by 1.8 years (p = 0.0021) and 2.3 years (p = 0.0207), respectively, compared with SoC alone.ConclusionLong-term, real-world treatment with ataluren plus SoC delays several disease progression milestones in individuals with nmDMD. NCT02369731; registration date: February 24, 2015.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Sezgin, E, et al. (författare)
  • Creating Supported Plasma Membrane Bilayers Using Acoustic Pressure
  • 2020
  • Ingår i: Membranes. - : MDPI AG. - 2077-0375. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Model membrane systems are essential tools for the study of biological processes in a simplified setting to reveal the underlying physicochemical principles. As cell-derived membrane systems, giant plasma membrane vesicles (GPMVs) constitute an intermediate model between live cells and fully artificial structures. Certain applications, however, require planar membrane surfaces. Here, we report a new approach for creating supported plasma membrane bilayers (SPMBs) by bursting cell-derived GPMVs using ultrasound within a microfluidic device. We show that the mobility of outer leaflet molecules is preserved in SPMBs, suggesting that they are accessible on the surface of the bilayers. Such model membrane systems are potentially useful in many applications requiring detailed characterization of plasma membrane dynamics.
  •  
7.
  •  
8.
  • Rauch, Alexander, et al. (författare)
  • Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor.
  • 2010
  • Ingår i: Cell metabolism. - : Elsevier BV. - 1932-7420 .- 1550-4131. ; 11:6, s. 517-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Development of osteoporosis severely complicates long-term glucocorticoid (GC) therapy. Using a Cre-transgenic mouse line, we now demonstrate that GCs are unable to repress bone formation in the absence of glucocorticoid receptor (GR) expression in osteoblasts as they become refractory to hormone-induced apoptosis, inhibition of proliferation, and differentiation. In contrast, GC treatment still reduces bone formation in mice carrying a mutation that only disrupts GR dimerization, resulting in bone loss in vivo, enhanced apoptosis, and suppressed differentiation in vitro. The inhibitory GC effects on osteoblasts can be explained by a mechanism involving suppression of cytokines, such as interleukin 11, via interaction of the monomeric GR with AP-1, but not NF-kappaB. Thus, GCs inhibit cytokines independent of GR dimerization and thereby attenuate osteoblast differentiation, which accounts, in part, for bone loss during GC therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy