SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Swietlicki E.) "

Sökning: WFRF:(Swietlicki E.)

  • Resultat 1-25 av 64
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boy, M., et al. (författare)
  • Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:3, s. 2015-2061
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic Centre of Excellence CRAICC (Cryosphere-Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011-2016, is the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic region. CRAICC gathered more than 100 scientists from all Nordic countries in a virtual centre with the objectives of identifying and quantifying the major processes controlling Arctic warming and related feedback mechanisms, outlining strategies to mitigate Arctic warming, and developing Nordic Earth system modelling with a focus on short-lived climate forcers (SLCFs), including natural and anthropogenic aerosols. The outcome of CRAICC is reflected in more than 150 peer-reviewed scientific publications, most of which are in the CRAICC special issue of the journal Atmospheric Chemistry and Physics. This paper presents an overview of the main scientific topics investigated in the centre and provides the reader with a state-of-the-art comprehensive summary of what has been achieved in CRAICC with links to the particular publications for further detail. Faced with a vast amount of scientific discovery, we do not claim to completely summarize the results from CRAICC within this paper, but rather concentrate here on the main results which are related to feedback loops in climate change-cryosphere interactions that affect Arctic amplification.
  •  
2.
  • Kulmala, M., et al. (författare)
  • General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:24, s. 13061-13143
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
  •  
3.
  • Kiendler-Scharr, A., et al. (författare)
  • Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 43:14, s. 7735-7744
  • Tidskriftsartikel (refereegranskat)abstract
    • In the atmosphere nighttime removal of volatile organic compounds is initiated to a large extent by reaction with the nitrate radical (NO3) forming organic nitrates which partition between gas and particulate phase. Here we show based on particle phase measurements performed at a suburban site in the Netherlands that organic nitrates contribute substantially to particulate nitrate and organic mass. Comparisons with a chemistry transport model indicate that most of the measured particulate organic nitrates are formed by NO3 oxidation. Using aerosol composition data from three intensive observation periods at numerous measurement sites across Europe, we conclude that organic nitrates are a considerable fraction of fine particulate matter (PM1) at the continental scale. Organic nitrates represent 34% to 44% of measured submicron aerosol nitrate and are found at all urban and rural sites, implying a substantial potential of PM reduction by NOx emission control.
  •  
4.
  • Malmqvist, K. G., et al. (författare)
  • PIXE and proton microprobe advances at the Lund Institute of Technology
  • 1989
  • Ingår i: Nuclear Inst. and Methods in Physics Research, B. - 0168-583X. ; 40-41:PART 1, s. 685-689
  • Tidskriftsartikel (refereegranskat)abstract
    • A review of recent advances in high-energy ion beam analysis at the Lund Institute of Technology is presented. A nonvacuum specimen chamber allows chemical speciation using a combination of ion beam analysis and controlled heating. The development of a new versatile scanning proton microbeam based on a new dedicated accelerator, an achromatic triplet lens and an advanced specimen chamber is outlined together with the performance of a microVAX-II/VMEbus-based data acquisition system.
  •  
5.
  • Mann, G. W., et al. (författare)
  • Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:9, s. 4679-4713
  • Tidskriftsartikel (refereegranskat)abstract
    • Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e. g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.
  •  
6.
  • Asmi, A., et al. (författare)
  • Aerosol decadal trends - Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 13:2, s. 895-916
  • Tidskriftsartikel (refereegranskat)abstract
    • We have analysed the trends of total aerosol particle number concentrations (N) measured at long-term measurement stations involved either in the Global Atmosphere Watch (GAW) and/or EU infrastructure project ACTRIS. The sites are located in Europe, North America, Antarctica, and on Pacific Ocean islands. The majority of the sites showed clear decreasing trends both in the full-length time series, and in the intra-site comparison period of 2001-2010, especially during the winter months. Several potential driving processes for the observed trends were studied, and even though there are some similarities between N trends and air temperature changes, the most likely cause of many northern hemisphere trends was found to be decreases in the anthropogenic emissions of primary particles, SO2 or some co-emitted species. We could not find a consistent agreement between the trends of N and particle optical properties in the few stations with long time series of all of these properties. The trends of N and the proxies for cloud condensation nuclei (CCN) were generally consistent in the few European stations where the measurements were available. This work provides a useful comparison analysis for modelling studies of trends in aerosol number concentrations.
  •  
7.
  • Glasius, M., et al. (författare)
  • Composition and sources of carbonaceous aerosols in Northern Europe during winter
  • 2018
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1873-2844 .- 1352-2310. ; 173, s. 127-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Sources of elemental carbon (EC) and organic carbon (OC) in atmospheric aerosols (carbonaceous aerosols) were investigated by collection of weekly aerosol filter samples at six background sites in Northern Europe (Birkenes, Norway; Vavihill, Sweden; Risoe, Denmark; Cabauw and Rotterdam in The Netherlands; Melpitz, Germany) during winter 2013. Analysis of 14 C and a set of molecular tracers were used to constrain the sources of EC and OC. During the four-week campaign, most sites (in particular those in Germany and The Netherlands) were affected by an episode during the first two weeks with high concentrations of aerosol, as continental air masses were transported westward. The analysis results showed a clear, increasing north to south gradient for most molecular tracers. Total carbon (TC = OC + EC) at Birkenes showed an average concentration of 0.5 ± 0.3 μg C m −3 , whereas the average concentration at Melpitz was 6.0 ± 4.3 μg C m −3 . One weekly mean TC concentration as high as 11 μg C m −3 was observed at Melpitz. Average levoglucosan concentrations varied by an order of magnitude from 25 ± 13 ng m −3 (Birkenes) to 249 ± 13 ng m −3 (Melpitz), while concentrations of tracers of fungal spores (arabitol and mannitol) and vegetative debris (cellulose) were very low, showing a minor influence of primary biological aerosol particles during the North European winter. The fraction of modern carbon generally varied from 0.57 (Melpitz) to 0.91 (Birkenes), showing an opposite trend compared to the molecular tracers and TC. Total concentrations of 10 biogenic and anthropogenic carboxylic acids, mainly of secondary origin, were 4–53 ng m −3 , with the lowest concentrations observed at Birkenes and the highest at Melpitz. However, the highest relative concentrations of carboxylic acids (normalized to TC) were observed at the most northern sites. Levels of organosulphates and nitrooxy organosulphates varied more than two orders of magnitude, from 2 to 414 ng m −3 , between individual sites and samples. The three sites Melpitz, Rotterdam and Cabauw, located closest to source regions in continental Europe, showed very high levels of organosulphates and nitrooxy organosulphates (up to 414 ng m −3 ) during the first two weeks of the study, while low levels ( < 7 ng m −3 ) were found at all sites except Melpitz during the last week. The large variation in organosulphate levels probably reflects differences in the presence of acidic sulphate aerosols, known from laboratory studies to accelerate the formation of these compounds. On average, the ratio of organic sulphate to inorganic sulphate was 1.5 ± 1.0% (range 0.1–3.4%). Latin-hypercube source apportionment techniques identified biomass burning as the major source of OC for all samples at all sites (typically > 40% of TC), while use and combustion of fossil fuels was the second most important source. Furthermore, EC from biomass burning accounted for 7–16% of TC, whereas EC from fossil sources contributed to < 2–23% of TC, of which the highest percentages were observed for low-concentration aerosol samples. Unresolved non-fossil sources (such as cooking and biogenic secondary organic aerosols) did not account for more than 5–12% of TC. The results confirm that wood combustion is a major source to OC and EC in Northern Europe during winter.
  •  
8.
  • Manninen, H. E., et al. (författare)
  • EUCAARI ion spectrometer measurements at 12 European sites - analysis of new particle formation events
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:16, s. 7907-7927
  • Tidskriftsartikel (refereegranskat)abstract
    • We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range similar to 1-42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1-30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.
  •  
9.
  • Nordin, E. Z., et al. (författare)
  • Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber
  • 2013
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:12, s. 6101-6116
  • Tidskriftsartikel (refereegranskat)abstract
    • Gasoline vehicles have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from three passenger vehicles (EURO2-EURO4) were investigated with photo-oxidation experiments in a 6 m(3) smog chamber. The experiments were carried out down to atmospherically relevant organic aerosol mass concentrations. The characterization instruments included a high-resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind of urban areas. After a cumulative OH exposure of similar to 5 x 10(6) cm(-3) h, the formed SOA was 1-2 orders of magnitude higher than the primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f(43) (mass fraction at m/z = 43), approximately two times higher than to the gasoline SOA. However O:C and H:C ratios were similar for the two cases. Classical C-6-C-9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher-order aromatic compounds such as C-10 and C-11 light aromatics, naphthalene and methyl-naphthalenes. We conclude that approaches using only light aromatic precursors give an incomplete picture of the magnitude of SOA formation and the SOA composition from gasoline exhaust.
  •  
10.
  • Scott, C. E., et al. (författare)
  • Impact on short-lived climate forcers increases projected warming due to deforestation
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The climate impact of deforestation depends on the relative strength of several biogeochemical and biogeophysical effects. In addition to affecting the exchange of carbon dioxide (CO2) and moisture with the atmosphere and surface albedo, vegetation emits biogenic volatile organic compounds (BVOCs) that alter the formation of short-lived climate forcers (SLCFs), which include aerosol, ozone and methane. Here we show that a scenario of complete global deforestation results in a net positive radiative forcing (RF; 0.12 W m-2) from SLCFs, with the negative RF from decreases in ozone and methane concentrations partially offsetting the positive aerosol RF. Combining RFs due to CO2, surface albedo and SLCFs suggests that global deforestation could cause 0.8 K warming after 100 years, with SLCFs contributing 8% of the effect. However, deforestation as projected by the RCP8.5 scenario leads to zero net RF from SLCF, primarily due to nonlinearities in the aerosol indirect effect.
  •  
11.
  • Zanatta, M., et al. (författare)
  • A European aerosol phenomenology-5 : Climatology of black carbon optical properties at 9 regional background sites across Europe
  • 2016
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 145, s. 346-364
  • Tidskriftsartikel (refereegranskat)abstract
    • A reliable assessment of the optical properties of atmospheric black carbon is of crucial importance for an accurate estimation of radiative forcing. In this study we investigated the spatio-temporal variability of the mass absorption cross-section (MAC) of atmospheric black carbon, defined as light absorption coefficient (sigma(ap)) divided by elemental carbon mass concentration (m(EC)). sigma(ap) and m(EC) have been monitored at supersites of the ACTRIS network for a minimum period of one year. The 9 rural background sites considered in this study cover southern Scandinavia, central Europe and the Mediterranean. sigma(ap) was determined using filter based absorption photometers and m(EC) using a thermal-optical technique. Homogeneity of the data-set was ensured by harmonization of all involved methods and instruments during extensive intercomparison exercises at the European Center for Aerosol Calibration (ECAC). Annual mean values of sigma(ap) at a wavelength of 637 nm vary between 0.66 and 1.3 Mm(-1) in southern Scandinavia, 3.7-11 Mm(-1) in Central Europe and the British Isles, and 2.3-2.8 Mm(-1) in the Mediterranean. Annual mean values of mEC vary between 0.084 and 0.23 mu g m(-3) in southern Scandinavia, 0.28 -1.1 in Central Europe and the British Isles, and 0.22-0.26 in the Mediterranean. Both sigma(ap) and mEC in southern Scandinavia and Central Europe have a distinct seasonality with maxima during the cold season and minima during summer, whereas at the Mediterranean sites an opposite trend was observed. Annual mean MAC values were quite similar across all sites and the seasonal variability was small at most sites. Consequently, a MAC value of 10.0 m(2) g(-1) (geometric standard deviation = 133) at a wavelength of 637 nm can be considered to be representative of the mixed boundary layer at European background sites, where BC is expected to be internally mixed to a large extent. The observed spatial variability is rather small compared to the variability of values in previous literature, indicating that the harmonization efforts resulted in substantially increased precision of the reported MAC. However, absolute uncertainties of the reported MAC values remain as high as +/- 30-70% due to the lack of appropriate reference methods and calibration materials. The mass ratio between elemental carbon and non-light-absorbing matter was used as a proxy for the thickness of coatings around the BC cores, in order to assess the influence of the mixing state on the MAC of BC. Indeed, the MAC was found to increase with increasing values of the coating thickness proxy. This provides evidence that coatings do increase the MAC of atmospheric BC to some extent, which is commonly referred to as lensing effect.
  •  
12.
  • Artaxo, Paulo, et al. (författare)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
13.
  • Asmi, A., et al. (författare)
  • Number size distributions and seasonality of submicron particles in = rope 2008-2009
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:11, s. 5505-5538
  • Tidskriftsartikel (refereegranskat)abstract
    • Two years of harmonized aerosol number size distribution data from 24 = ropean field monitoring sites have been analysed. The results give a = mprehensive overview of the European near surface aerosol particle = mber concentrations and number size distributions between 30 and 500 = of dry particle diameter. Spatial and temporal distribution of = rosols in the particle sizes most important for climate applications = e presented. We also analyse the annual, weekly and diurnal cycles of = e aerosol number concentrations, provide log-normal fitting parameters = r median number size distributions, and give guidance notes for data = ers. Emphasis is placed on the usability of results within the aerosol = delling community.
  •  
14.
  • Beddows, D. C. S., et al. (författare)
  • Variations in tropospheric submicron particle size distributions across the European continent 2008-2009
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:8, s. 4327-4348
  • Tidskriftsartikel (refereegranskat)abstract
    • Cluster analysis of particle number size distributions from background sites across Europe is presented. This generated a total of nine clusters of particle size distributions which could be further combined into two main groups, namely: a south-to-north category (four clusters) and a west-to-east category (five clusters). The first group was identified as most frequently being detected inside and around northern Germany and neighbouring countries, showing clear evidence of local afternoon nucleation and growth events that could be linked to movement of air masses from south to north arriving ultimately at the Arctic contributing to Arctic haze. The second group of particle size spectra proved to have narrower size distributions and collectively showed a dependence of modal diameter upon the longitude of the site (west to east) at which they were most frequently detected. These clusters indicated regional nucleation (at the coastal sites) growing to larger modes further inland. The apparent growth rate of the modal diameter was around 0.6-0.9 nm h(-1). Four specific air mass back-trajectories were successively taken as case studies to examine in real time the evolution of aerosol size distributions across Europe. While aerosol growth processes can be observed as aerosol traverses Europe, the processes are often obscured by the addition of aerosol by emissions en route. This study revealed that some of the 24 stations exhibit more complex behaviour than others, especially when impacted by local sources or a variety of different air masses. Overall, the aerosol size distribution clustering analysis greatly simplifies the complex data set and allows a description of aerosol aging processes, which reflects the longer-term average development of particle number size distributions as air masses advect across Europe.
  •  
15.
  • Bower, K. N., et al. (författare)
  • ACE-2 HILLCLOUD. An overview of the ACE-2 ground-based cloud experiment
  • 2000
  • Ingår i: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 0280-6509. ; 52:2, s. 750-778
  • Tidskriftsartikel (refereegranskat)abstract
    • The ACE-2 HILLCLOUD experiment was carried out on the island of Tenerife in June-July 1997 to investigate the interaction of the boundary layer aerosol with a hill cap cloud forming over a ridge to the north-east of the island. The cloud was used as a natural flow through reactor to investigate the dependence of the cloud microphysics and chemistry on the characteristics of the aerosols and trace gases entering cloud, and to simultaneously study the influence of the physical and chemical processes occurring within the cloud on the size distribution, chemical and hygroscopic properties of the aerosol exiting cloud. 5 major ground base sites were used, measuring trace gases and aerosols upwind and downwind of the cloud, and cloud microphysics and chemistry and interstitial aerosol and gases within the cloud on the hill. 8 intensive measurement periods or runs were undertaken during cloud events, (nocturnally for seven of the eight runs) and were carried out in a wide range of airmass conditions from clean maritime to polluted continental. Polluted air was characterised by higher than average concentrations of ozone (> 50 ppbv), fine and accumulation mode aerosols (> 3000 and > 1500 cm -3 , respectively) and higher aerosol mass loadings. Cloud droplet number concentrations N, increased from 50 cm -3 in background maritime air to > 2500 cm -3 in aged polluted continental air, a concentration much higher than had previously been detected. Surprisingly, N was seen to vary almost linearly with aerosol number across this range. The droplet aerosol analyser (DAA) measured higher droplet numbers than the corrected forward scattering spectrometer probe (FSSP) in the most polluted air, but at other times there was good agreement (FSSP = 0.95 DAA with an r 2 = 0.89 for N < 1200 cm -3 ). Background ammonia gas concentrations were around 0.3 ppbv even in air originating over the ocean, another unexpected but important result for the region. NO 2 was present in background concentrations of typically 15 pptv to 100 pptv and NO 3 . (the nitrate radical) was observed at night throughout. Calculations suggest NO 3 . losses were mainly by reaction with DMS to produce nitric acid. Low concentrations of SO 2 (~30 pptv), HNO 3 and HCl were always present. HNO 3 concentrations were higher in polluted episodes and calculations implied that these exceeded those which could be accounted for by NO 2 oxidation. It is presumed that nitric and hydrochloric acids were present as a result of outgassing from aerosol, the HNO 3 from nitrate rich aerosol transported into the region from upwind of Tenerife, and HCl from sea salt aerosol newly formed at the sea surface. The oxidants hydrogen peroxide and ozone were abundant (i.e., were well in excess over SO 2 throughout the experiment). Occasions of significant aerosol growth following cloud processing were observed, particularly in cleaner cases. Observations and modelling suggested this was due mainly to the take up of nitric acid, hydrochloric acid and ammonia by the smallest activated aerosol particles. On a few occasions a small contribution was made by the in-cloud oxidation of S(IV). The implications of these results from HILLCLOUD for the climatologically more important stratocumulus Marine Boundary Layer (MBL) clouds are considered.
  •  
16.
  • Cavalli, F., et al. (författare)
  • A European aerosol phenomenology-4 : Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe
  • 2016
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 144, s. 133-145
  • Tidskriftsartikel (refereegranskat)abstract
    • Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and More uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0:4 to 2.8 mu g C/m(3)) and analytical discrepancies (between -50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 mu g C/m(3), and from 0.1 to 2 mu g C/m(3), respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15-0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.
  •  
17.
  • Choularton, T. W., et al. (författare)
  • The Great Dun Fell Cloud Experiment 1993 : An overview
  • 1997
  • Ingår i: Atmospheric Environment. - 1352-2310. ; 31:16, s. 2393-2405
  • Tidskriftsartikel (refereegranskat)abstract
    • The 1993 Ground-based Cloud Experiment on Great Dun Fell used a wide range of measurements of trace gases, aerosol particles and cloud droplets at five sites to study their sources and sinks especially those in cloud. These measurements have been interpreted using a variety of models. The conclusions add to our knowledge of air pollution, acidification of the atmosphere and the ground, eutrophication and climate change. The experiment is designed to use the hill cap cloud as a flow-through reactor, and was conducted in varying levels of pollution typical of much of the rural temperate continental northern hemisphere in spring-time.
  •  
18.
  • Crippa, M., et al. (författare)
  • Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach
  • 2014
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 14:12, s. 6159-6176
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) and the intensive campaigns of European Monitoring and Evaluation Programme (EMEP) during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we define a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 data sets accounting for two urban, several rural and remote and two high altitude sites; therefore it is likely suitable for the treatment of AMS-related ambient data sets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Generally, our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling purposes.
  •  
19.
  • Dall'Osto, M., et al. (författare)
  • Novel insights on new particle formation derived from a pan-european observing system
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of new atmospheric particles involves an initial step forming stable clusters less than a nanometre in size (similar to 10 nm). Although at times, the same species can be responsible for both processes, it is thought that more generally each step comprises differing chemical contributors. Here, we present a novel analysis of measurements from a unique multi-station ground-based observing system which reveals new insights into continental-scale patterns associated with new particle formation. Statistical cluster analysis of this unique 2-year multi-station dataset comprising size distribution and chemical composition reveals that across Europe, there are different major seasonal trends depending on geographical location, concomitant with diversity in nucleating species while it seems that the growth phase is dominated by organic aerosol formation. The diversity and seasonality of these events requires an advanced observing system to elucidate the key processes and species driving particle formation, along with detecting continental scale changes in aerosol formation into the future.
  •  
20.
  • Fountoukis, C., et al. (författare)
  • Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis
  • 2014
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 14:17, s. 9061-9076
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed three-dimensional regional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions, PMCAMx) was applied over Europe, focusing on the formation and chemical transformation of organic matter. Three periods representative of different seasons were simulated, corresponding to intensive field campaigns. An extensive set of AMS measurements was used to evaluate the model and, using factor-analysis results, gain more insight into the sources and transformations of organic aerosol (OA). Overall, the agreement be-tween predictions and measurements for OA concentration is encouraging, with the model reproducing two-thirds of the data (daily average mass concentrations) within a factor of 2. Oxygenated OA (OOA) is predicted to contribute 93% to total OA during May, 87% during winter and 96% during autumn, with the rest consisting of fresh primary OA (POA). Predicted OOA concentrations compare well with the observed OOA values for all periods, with an average fractional error of 0.53 and a bias equal to -0.07 (mean error = 0.9 mu g m(-3), mean bias =-0.2 mu g m(-3)). The model systematically underpredicts fresh POA at most sites during late spring and autumn (mean bias up to -0.8 mu g m(-3)). Based on results from a source apportionment algorithm running in parallel with PMCAMx, most of the POA originates from biomass burning (fires and residential wood combustion), and therefore biomass burning OA is most likely underestimated in the emission inventory. The sensitivity of POA predictions to the corresponding emissions' volatility distribution is discussed. The model performs well at all sites when the Positive Matrix Factorization (PMF)-estimated low-volatility OOA is compared against the OA with saturation concentrations of the OA surrogate species C* <= 0.1 mu g m(-3) and semivolatile OOA against the OA with C* > 0.1 mu g m(-3).
  •  
21.
  •  
22.
  • Hedberg Larsson, E, et al. (författare)
  • Is Levoglucosan a Suitable Quantitative Tracer for Wood Burning? - Comparison with Receptor Modeling on Trace Elements in Lycksele, Sweden
  • 2006
  • Ingår i: Journal of the Air and Waste Management Association. - 1096-2247. ; 56:12, s. 1669-1678
  • Tidskriftsartikel (refereegranskat)abstract
    • Particle emissions from residential wood combustion in small communities in Northern Sweden can sometimes increase the ambient particle concentrations to levels comparable to densely trafficked streets in the center of large cities. The reason for this is the combination of increased need for domestic heating during periods of low temperatures, leading to higher emission rates, and stable meteorological conditions. In this work, the authors compare two different approaches to quantify the wood combustion contribution to fine particles in Northern Sweden: a multivariate source-receptor analysis on inorganic compounds followed by multiple linear regression (MLR) of fine particle concentrations and levoglucosan used as a tracer. From the receptor model, it can be seen that residential wood combustion corresponds with 70% of modeled particle mass. Smaller contributions are also seen from local nonexhaust traffic particles, road dust, and brake wear (each contributing 14%). Of the mass, 1.5% is explained by long-distance transported particles, and 2% derives from a regional source deriving from either oil combustion or smelter activities. In samples collected in ambient air, a significant linear correlation was found between wood burning particles and levoglucosan. The levoglucosan fraction in the ambient fine particulate matter attributed to wood burning according to the multivariate analysis ranged from < 2% to 50%. This is much higher than the fraction found in the emission from the boilers expected to be responsible for most emissions at this site (between 3% and 6%). A laboratory emission study of wood and pellet boilers gave 0.3%(wt) to 22%(wt) levoglucosan to particle mass, indicating that the levoglucosan fraction may be highly dependent on combustion conditions, making it uncertain to use it as a quantitative tracer under real-world burning conditions. Thus, quantitative estimates of wood burning contributions will be very uncertain using solely levoglucosan as a tracer.
  •  
23.
  •  
24.
  • Kulmala, Markku, et al. (författare)
  • Overview of the biosphere-aerosol-cloud-climate interactions (BACCI) studies
  • 2008
  • Ingår i: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 60:3, s. 300-317
  • Forskningsöversikt (refereegranskat)abstract
    • Here we present research methods and results obtained by the Nordic Centre of Excellence Biosphere-Aerosol-Cloud-Climate Interactions (BACCI) between 1 January 2003 and 31 December 2007. The centre formed an integrated attempt to understand multiple, but interlinked, biosphere-atmosphere interactions applying inter and multidisciplinary approaches in a coherent manner. The main objective was to study the life cycle of aerosol particles and their importance on climate change. The foundation in BACCI was a thorough understanding of physical, meteorological, chemical and ecophysiological processes, providing a unique possibility to study biosphere-aerosol-cloud-climate interactions. Continuous measurements of atmospheric concentrations and fluxes of aerosol particles and precursors and, CO2/aerosol trace gas interactions in different field stations (e.g. SMEAR) were supported by models of particle thermodynamics, transport and dynamics, atmospheric chemistry, boundary layer meteorology and forest growth. The main progress was related to atmospheric new particle formation, existence of clusters, composition of nucleation mode aerosol particles, chemical precursors of fresh aerosol particles, the contribution of biogenic aerosol particles on the global aerosol load, transport, transformation and deposition of aerosol particles, thermodynamics related to aerosol particles and cloud droplets, and the microphysics and chemistry of cloud droplet formation.
  •  
25.
  • Nordin, E. Z., et al. (författare)
  • Secondary organic aerosol formation from gasoline passenger vehicle emissions investigated in a smog chamber
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus Publications. - 1680-7367 .- 1680-7375. ; 12:12, s. 31725-31765
  • Tidskriftsartikel (refereegranskat)abstract
    • Gasoline vehicles have elevated emissions of volatile organic compounds during cold starts and idling and have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from one Euro II, one Euro III and one Euro IV passenger vehicles were investigated using photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out at atmospherically relevant organic aerosol mass concentrations. The characterization methods included a high resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind urban areas. After 4 h aging the formed SOA was 1–2 orders of magnitude higher than the Primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 4 3) approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6–C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher order aromatic compounds such as C10, C11 light aromatics, naphthalene and methyl-naphthalenes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 64
Typ av publikation
tidskriftsartikel (52)
konferensbidrag (6)
forskningsöversikt (4)
annan publikation (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (62)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Swietlicki, Erik (38)
Swietlicki, E. (28)
Kulmala, M (20)
Wiedensohler, A. (14)
Hansson, Hans-Christ ... (13)
Laj, P. (12)
visa fler...
Sellegri, K. (11)
Baltensperger, U. (10)
Tunved, Peter (10)
Weingartner, E. (9)
Harrison, R. M. (9)
Martinsson, B. G. (9)
Svenningsson, B. (8)
O'Dowd, C. (8)
Mihalopoulos, N. (8)
de Leeuw, G. (8)
Hansson, H. C. (8)
Putaud, J. P. (7)
Birmili, W. (7)
Krejci, Radovan (7)
Lihavainen, H. (7)
Asmi, E. (7)
Jennings, S. G. (7)
Fiebig, M. (7)
Prevot, A. S. H. (6)
Riipinen, Ilona (6)
Asmi, A. (6)
Svenningsson, Birgit ... (6)
Pagels, Joakim (6)
Petaja, T. (6)
Kulmala, Markku (6)
Gysel, M. (6)
Frank, G. (6)
Yttri, K. E. (5)
Kiss, G (5)
Eriksson, Axel (5)
Roldin, Pontus (5)
Kristensson, Adam (5)
Laaksonen, A. (5)
Pandis, S. N. (5)
Bower, K. N. (5)
Aalto, P. P. (5)
Genberg, Johan (5)
McFiggans, G. (5)
Carslaw, K. S. (5)
Facchini, M. C. (5)
Gallagher, M. W. (5)
Beswick, K. M. (5)
O'Dowd, C. D. (5)
Spracklen, D. V. (5)
visa färre...
Lärosäte
Lunds universitet (58)
Stockholms universitet (26)
Göteborgs universitet (5)
Chalmers tekniska högskola (4)
Umeå universitet (1)
Uppsala universitet (1)
visa fler...
Luleå tekniska universitet (1)
RISE (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (64)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (57)
Teknik (6)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy