SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tesche Matthias) "

Sökning: WFRF:(Tesche Matthias)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Achtert, Peggy, 1982-, et al. (författare)
  • Assessing lidar-based classification schemes for polar stratospheric clouds based on 16 years of measurements at Esrange, Sweden
  • 2014
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996. ; 119:3, s. 1386-1405
  • Tidskriftsartikel (refereegranskat)abstract
    • Lidar measurements of polar stratospheric clouds (PSCs) are commonly analyzed in classification schemes that apply the backscatter ratio and the particle depolarization ratio. This similarity of input data suggests comparable results of different classification schemes—despite measurements being performed with a variety of mostly custom-made instruments. Based on a time series of 16 years of lidar measurements at Esrange (68°N, 21°E), Sweden, we show that PSC classification differs substantially depending on the applied scheme. The discrepancies result from varying threshold values of lidar-derived parameters used to define certain PSC types. The resulting inconsistencies could impact the understanding of long-term PSC observations documented in the literature. We identify two out of seven considered classification schemes that are most likely to give reliable results and should be used in future lidar-based studies. Using polarized backscatter ratios gives the advantage of increased contrast for observations of weakly backscattering and weakly depolarizing particles. Improved confidence in PSC classification can be achieved by a more comprehensive consideration of the effect of measurement uncertainties. The particle depolarization ratio is the key to a reliable identification of different PSC types. Hence, detailed information on the calibration of the polarization-sensitive measurement channels should be provided to assess the findings of a study. Presently, most PSC measurements with lidar are performed at 532 nm only. The information from additional polarization-sensitive measurements in the near infrared could lead to an improved PSC classification. Coincident lidar-based temperature measurements at PSC level might provide useful information for an assessment of PSC classification.
  •  
2.
  • Ansmann, A., et al. (författare)
  • Profiling of fine and coarse particle mass : case studies of Saharan dust and Eyjafjallajokull/Grimsvotn volcanic plumes
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:20, s. 9399-9415
  • Tidskriftsartikel (refereegranskat)abstract
    • The polarization lidar photometer networking (POLIPHON) method introduced to separate coarse-mode and fine-mode particle properties of Eyjafjallajokull volcanic aerosols in 2010 is extended to cover Saharan dust events as well. Furthermore, new volcanic dust observations performed after the Grimsvotn volcanic eruptions in 2011 are presented. The retrieval of particle mass concentrations requires mass-specific extinction coefficients. Therefore, a review of recently published mass-specific extinction coefficients for Saharan dust and volcanic dust is given. Case studies of four different scenarios corroborate the applicability of the profiling technique: (a) Saharan dust outbreak to central Europe, (b) Saharan dust plume mixed with biomass-burning smoke over Cape Verde, and volcanic aerosol layers originating from (c) the Eyjafjallajokull eruptions in 2010 and (d) the Grimsvotn eruptions in 2011. Strong differences in the vertical aerosol layering, aerosol mixing, and optical properties are observed for the different volcanic events.
  •  
3.
  • Baars, Holger, et al. (författare)
  • An overview of the first decade of Polly(NET) : an emerging network of automated Raman-polarization lidars for continuous aerosol profiling
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:8, s. 5111-5137
  • Tidskriftsartikel (refereegranskat)abstract
    • A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63 degrees N to 52 degrees S and 72 degrees W to 124 degrees E has been achieved within the Raman and polarization lidar network Polly(NET). This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. Polly(NET) is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at polly.tropos.de. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Angstrom exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the Polly(NET) locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of Polly(NET) to support the establishment of a global aerosol climatology that covers the entire troposphere.
  •  
4.
  • Baumann, Stefan, et al. (författare)
  • Gender differences in the diagnostic performance of machine learning coronary CT angiography-derived fractional flow reserve -results from the MACHINE registry
  • 2019
  • Ingår i: European Journal of Radiology. - : ELSEVIER IRELAND LTD. - 0720-048X .- 1872-7727. ; 119
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: This study investigated the impact of gender differences on the diagnostic performance of machine-learning based coronary CT angiography (cCTA)-derived fractional flow reserve (CT-FFR mL ) for the detection of lesion-specific ischemia. Method: Five centers enrolled 351 patients (73.5% male) with 525 vessels in the MACHINE (Machine leArning Based CT angiograpHy derIved FFR: a Multi-ceNtEr) registry. CT-FFRML and invasive FFR amp;lt;= 0.80 were considered hemodynamically significant, whereas cCTA luminal stenosis amp;gt;= 50% was considered obstructive. The diagnostic performance to assess lesion-specific ischemia in both men and women was assessed on a per-vessel basis. Results: In total, 398 vessels in men and 127 vessels in women were included. Compared to invasive FFR, CT-FFRML reached a sensitivity, specificity, positive predictive value, and negative predictive value of 78% (95%CI 72-84), 79% (95%CI 73-84), 75% (95%CI 69-79), and 82% (95%CI: 76-86) in men vs. 75% (95%CI 58-88), 81 (95%CI 72-89), 61% (95%CI 50-72) and 89% (95%CI 82-94) in women, respectively. CT-FFRML showed no statistically significant difference in the area under the receiver-operating characteristic curve (AUC) in men vs. women (AUC: 0.83 [95%CI 0.79-0.87] vs. 0.83 [95%CI 0.75-0.89], p = 0.89). CT-FFRML was not superior to cCTA alone [AUC: 0.83 (95%CI: 0.75-0.89) vs. 0.74 (95%CI: 0.65-0.81), p = 0.12] in women, but showed a statistically significant improvement in men [0.83 (95%CI: 0.79-0.87) vs. 0.76 (95%CI: 0.71-0.80), p = 0.007]. Conclusions: Machine-learning based CT-FFR performs equally in men and women with superior diagnostic performance over cCTA alone for the detection of lesion-specific ischemia.
  •  
5.
  • Glantz, Paul, et al. (författare)
  • Assessment of two aerosol optical thickness retrieval algorithms applied to modis aqua and terra measurements in Europe
  • 2012
  • Ingår i: Atmospheric measurement techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 5:7, s. 1727-1740
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study is to validate AOT (aerosol optical thickness) and Angstrom exponent (alpha), obtained from MODIS (MODerate resolution Imaging Spectroradiometer) Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground) with the SAER (Satellite AErosol Retrieval) algorithm and with MODIS Collection 5 (c005) standard product retrievals (10 km horizontal resolution), against AERONET (AErosol RObotic NETwork) sun photometer observations over land surfaces in Europe. An inter-comparison of AOT at 0.469 nm obtained with the two algorithms has also been performed. The time periods investigated were chosen to enable a validation of the findings of the two algorithms for a maximal possible variation in sun elevation. The satellite retrievals were also performed with a significant variation in the satellite-viewing geometry, since Aqua and Terra passed the investigation area twice a day for several of the cases analyzed. The validation with AERONET shows that the AOT at 0.469 and 0.555 nm obtained with MODIS c005 is within the expected uncertainty of one standard deviation of the MODIS c005 retrievals (Delta AOT = +/- 0.05 +/- 0.15 center dot AOT). The AOT at 0.443 nm retrieved with SAER, but with a much finer spatial resolution, also agreed reasonably well with AERONET measurements. The majority of the SAER AOT values are within the MODIS c005 expected uncertainty range, although somewhat larger average absolute deviation occurs compared to the results obtained with the MODIS c005 algorithm. The discrepancy between AOT from SAER and AERONET is, however, substantially larger for the wavelength 488 nm. This means that the values are, to a larger extent, outside of the expected MODIS uncertainty range. In addition, both satellite retrieval algorithms are unable to estimate alpha accurately, although the MODIS c005 algorithm performs better. Based on the inter-comparison of the SAER and MODIS c005 algorithms, it was found that SAER on the whole is able to obtain results within the expected uncertainty range of MODIS Aqua and Terra observations.
  •  
6.
  • Glantz, Paul, et al. (författare)
  • Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations
  • 2014
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : Wiley-Blackwell. - 2169-897X .- 2169-8996. ; 119:13, s. 8169-8188
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval over ocean (Delta AOT = +/- 0.03 +/- 0.05 . AOT). The results from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties in the Arctic, generated by global climate models and from in situ measurements at the Zeppelin station, Svalbard. AOT simulated with the Norwegian Earth System Model/Community Atmosphere Model version 4 Oslo global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to 1 order of magnitude are found for the Coupled Model Intercomparison Project phase 5 model ensemble for the spring and summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer.
  •  
7.
  • Glantz, Paul, et al. (författare)
  • Trends in MODIS and AERONET derived aerosol optical thickness over Northern Europe
  • 2019
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 71:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term Aqua and Terra MODIS (MODerate resolution Imaging Spectroradiometer) Collections 5.1 and 6.1 (c051 and c061, respectively) aerosol data have been combined with AERONET (AERosol RObotic NETwork) ground-based sun photometer observations to examine trends in aerosol optical thickness (AOT, at 550nm) over Northern Europe for the months April to September. For the 1927 and 1559 daily coincident measurements that were obtained for c051 and c061, respectively, MODIS AOT varied by 86 and 90%, respectively, within the predicted uncertainty of one standard deviation of the retrieval over land (AOT = +/- 0.05 +/- 0.15AOT). For the coastal AERONET site Gustav Dalen Tower (GDT), Sweden, larger deviations were found for MODIS c051 and c061 (79% and 75%, respectively, within predicted uncertainty). The Baltic Sea provides substantially better statistical representation of AOT than the surrounding land areas and therefore favours the investigations of trends in AOT over the region. Negative trends of 1.5% and 1.2% per year in AOT, based on daily averaging, were found for the southwestern Baltic Sea from MODIS c051 and c061, respectively. This is in line with a decrease of 1.2% per year in AOT at the AERONET station Hamburg. For the western Gotland Basin area, Sweden, negative trends of 1.5%, 1.1% and 1.6% per year in AOT have been found for MODIS c051, MODIS c061 and AERONET GDT, respectively. The strongest trend of -1.8% per year in AOT was found for AERONET Belsk, Poland, which can be compared to -1.5% per day obtained from MODIS c051 over central Poland. The trends in MODIS and AERONET AOT are nearly all statistically significant at the 95% confidence level. The strongest aerosol sources are suggested to be located southwest, south and southeast of the investigation area, although the highest prevalence of pollution events is associated with air mass transport from southwest.
  •  
8.
  • Haustein, K., et al. (författare)
  • Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model - Part 2 : Experimental campaigns in Northern Africa
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:6, s. 2933-2958
  • Tidskriftsartikel (refereegranskat)abstract
    • The new NMMB/BSC-Dust model is intended to provide short to medium-range weather and dust forecasts from regional to global scales. It is an online model in which the dust aerosol dynamics and physics are solved at each model time step. The companion paper (P,rez et al., 2011) develops the dust model parameterizations and provides daily to annual evaluations of the model for its global and regional configurations. Modeled aerosol optical depth (AOD) was evaluated against AERONET Sun photometers over Northern Africa, Middle East and Europe with correlations around 0.6-0.7 on average without dust data assimilation. In this paper we analyze in detail the behavior of the model using data from the Saharan Mineral dUst experiment (SAMUM-1) in 2006 and the Bod,l, Dust Experiment (BoDEx) in 2005. AOD from satellites and Sun photometers, vertically resolved extinction coefficients from lidars and particle size distributions at the ground and in the troposphere are used, complemented by wind profile data and surface meteorological measurements. All simulations were performed at the regional scale for the Northern African domain at the expected operational horizontal resolution of 25 km. Model results for SAMUM-1 generally show good agreement with satellite data over the most active Saharan dust sources. The model reproduces the AOD from Sun photometers close to sources and after long-range transport, and the dust size spectra at different height levels. At this resolution, the model is not able to reproduce a large haboob that occurred during the campaign. Some deficiencies are found concerning the vertical dust distribution related to the representation of the mixing height in the atmospheric part of the model. For the BoDEx episode, we found the diurnal temperature cycle to be strongly dependant on the soil moisture, which is underestimated in the NCEP analysis used for model initialization. The low level jet (LLJ) and the dust AOD over the Bod,l, are well reproduced. The remaining negative AOD bias (due to underestimated surface wind speeds) can be substantially reduced by decreasing the threshold friction velocity in the model.
  •  
9.
  • Mueller, D., et al. (författare)
  • Comparison of optical and microphysical properties of pure Saharan mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. D07211-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Saharan Mineral Dust Experiment (SAMUM) 2006, Morocco, aimed at the characterization of optical, physical, and radiative properties of Saharan dust. AERONET Sun photometer, several lidars (Raman and high-spectral-resolution instruments), and airborne and ground-based in situ instruments provided us with a comprehensive set of data on particle-shape dependent and particle-shape independent dust properties. We compare 4 measurement days in detail, and we carry out a statistical analysis for some of the inferred data products for the complete measurement period. Particle size distributions and complex refractive indices inferred from the Sun photometer observations and measured in situ aboard a research aircraft show systematic differences. We find differences in the wavelength-dependence of single-scattering albedo, compared to light-scattering computations that use data from SOAP (spectral optical absorption photometer). AERONET data products of particle size distribution, complex refractive index, and axis ratios were used to compute particle extinction-to-backscatter (lidar) ratios and linear particle depolarization ratios. We find differences for these parameters to lidar measurements of lidar ratio and particle depolarization ratio. Differences particularly exist at 355 nm, which may be the result of differences of the wavelength-dependent complex refractive index that is inferred by the methods employed in this field campaign. We discuss various error sources that may lead to the observed differences.
  •  
10.
  • Pappalardo, G., et al. (författare)
  • Four-dimensional distribution of the 2010 Eyjafjallajokull volcanic cloud over Europe observed by EARLINET
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:8, s. 4429-4450
  • Tidskriftsartikel (refereegranskat)abstract
    • The eruption of the Icelandic volcano Eyjafjallajokull in April-May 2010 represents a natural experiment to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajokull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5-15 May), material emitted by the Eyjafjallajokull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.
  •  
11.
  • Quaas, Johannes, et al. (författare)
  • Constraining the Twomey effect from satellite observations : issues and perspectives
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:23, s. 15079-15099
  • Tidskriftsartikel (refereegranskat)abstract
    • The Twomey effect describes the radiative forcing associated with a change in cloud albedo due to an increase in anthropogenic aerosol emissions. It is driven by the perturbation in cloud droplet number concentration (Delta N-d, (ant)) in liquid-water clouds and is currently understood to exert a cooling effect on climate. The Twomey effect is the key driver in the effective radiative forcing due to aerosol-cloud interactions, but rapid adjustments also contribute. These adjustments are essentially the responses of cloud fraction and liquid water path to Delta N-d, (ant) ant and thus scale approximately with it. While the fundamental physics of the influence of added aerosol particles on the droplet concentration (N-d) is well described by established theory at the particle scale (micrometres), how this relationship is expressed at the large-scale (hundreds of kilometres) perturbation, Delta N-d, (ant), remains uncertain. The discrepancy between process under-standing at particle scale and insufficient quantification at the climate-relevant large scale is caused by co-variability of aerosol particles and updraught velocity and by droplet sink processes. These operate at scales on the order of tens of metres at which only localised observations are available and at which no approach yet exists to quantify the anthropogenic perturbation. Different atmospheric models suggest diverse magnitudes of the Twomey effect even when applying the same anthropogenic aerosol emission perturbation. Thus, observational data are needed to quantify and constrain the Twomey effect. At the global scale, this means satellite data. There are four key uncertainties in determining Delta N-d, (ant) namely the quantification of (i) the cloud-active aerosol - the cloud condensation nuclei (CCN) concentrations at or above cloud base, (ii) N-d, (iii) the statistical approach for inferring the sensitivity of N-d to aerosol particles from the satellite data and (iv) uncertainty in the anthropogenic perturbation to CCN concentrations, which is not easily accessible from observational data. This review discusses deficiencies of current approaches for the different aspects of the problem and proposes several ways forward: in terms of CCN, retrievals of optical quantities such as aerosol optical depth suffer from a lack of vertical resolution, size and hygroscopicity information, non-direct relation to the concentration of aerosols, difficulty to quantify it within or below clouds, and the problem of insufficient sensitivity at low concentrations, in addition to retrieval errors. A future path forward can include utilising co-located polarimeter and lidar instruments, ideally including high-spectral-resolution lidar capability at two wavelengths to maximise vertically resolved size distribution information content. In terms of N-d, a key problem is the lack of operational retrievals of this quantity and the inaccuracy of the retrieval especially in broken-cloud regimes. As for the N-d-to-CCN sensitivity, key issues are the updraught distributions and the role of N-d sink processes, for which empirical assessments for specific cloud regimes are currently the best solutions. These considerations point to the conclusion that past studies using existing approaches have likely underestimated the true sensitivity and, thus, the radiative forcing due to the Twomey effect.
  •  
12.
  • Rastak, Narges, et al. (författare)
  • Seasonal variation of aerosol water uptake and its impact on the direct radiative effect at Ny-Alesund, Svalbard
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:14, s. 7445-7460
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we investigated the impact of water uptake by aerosol particles in ambient atmosphere on their optical properties and their direct radiative effect (ADRE, W m(-2)) in the Arctic at Ny-Alesund, Svalbard, during 2008. To achieve this, we combined three models, a hygroscopic growth model, a Mie model and a radiative transfer model, with an extensive set of observational data. We found that the seasonal variation of dry aerosol scattering coefficients showed minimum values during the summer season and the beginning of fall (July-August-September), when small particles (< 100 nm in diameter) dominate the aerosol number size distribution. The maximum scattering by dry particles was observed during the Arctic haze period (March-April-May) when the average size of the particles was larger. Considering the hygroscopic growth of aerosol particles in the ambient atmosphere had a significant impact on the aerosol scattering coefficients: the aerosol scattering coefficients were enhanced by on average a factor of 4.30 +/- 2.26 (mean +/- standard deviation), with lower values during the haze period (March-April-May) as compared to summer and fall. Hygroscopic growth of aerosol particles was found to cause 1.6 to 3.7 times more negative ADRE at the surface, with the smallest effect during the haze period (March-April-May) and the highest during late summer and beginning of fall (July-August-September).
  •  
13.
  • Renker, Matthias, et al. (författare)
  • Influence of coronary stenosis location on diagnostic performance of machine learning-based fractional flow reserve from CT angiography
  • 2021
  • Ingår i: JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY. - : ELSEVIER SCIENCE INC. - 1934-5925. ; 15:6, s. 492-498
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Compared with invasive fractional flow reserve (FFR), coronary CT angiography (cCTA) is limited in detecting hemodynamically relevant lesions. cCTA-based FFR (CT-FFR) is an approach to overcome this insufficiency by use of computational fluid dynamics. Applying recent innovations in computer science, a machine learning (ML) method for CT-FFR derivation was introduced and showed improved diagnostic performance compared to cCTA alone. We sought to investigate the influence of stenosis location in the coronary artery system on the performance of ML-CT-FFR in a large, multicenter cohort. Methods: Three hundred and thirty patients (75.2% male, median age 63 years) with 502 coronary artery stenoses were included in this substudy of the MACHINE (Machine Learning Based CT Angiography Derived FFR: A MultiCenter Registry) registry. Correlation of ML-CT-FFR with the invasive reference standard FFR was assessed and pooled diagnostic performance of ML-CT-FFR and cCTA was determined separately for the following stenosis locations: RCA, LAD, LCX, proximal, middle, and distal vessel segments. Results: ML-CT-FFR correlated well with invasive FFR across the different stenosis locations. Per-lesion analysis revealed improved diagnostic accuracy of ML-CT-FFR compared with conventional cCTA for stenoses in the RCA (71.8% [95% confidence interval, 63.0%-79.5%] vs. 54.8% [45.7%-63.8%]), LAD (79.3 [73.9-84.0] vs. 59.6 [53.5-65.6]), LCX (84.1 [76.0-90.3] vs. 63.7 [54.1-72.6]), proximal (81.5 [74.6-87.1] vs. 63.8 [55.9-71.2]), middle (81.2 [75.7-85.9] vs. 59.4 [53.0-65.6]) and distal stenosis location (67.4 [57.0-76.6] vs. 51.6 [41.1-62.0]). Conclusion: In a multicenter cohort with high disease prevalence, ML-CT-FFR offered improved diagnostic performance over cCTA for detecting hemodynamically relevant stenoses regardless of their location.
  •  
14.
  • Tesche, Christian, et al. (författare)
  • Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR Results From MACHINE Registry
  • 2020
  • Ingår i: JACC Cardiovascular Imaging. - : ELSEVIER SCIENCE INC. - 1936-878X .- 1876-7591. ; 13:3, s. 760-770
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVESThis study was conducted to investigate the influence of coronary artery calcium (CAC) score on the diagnostic performance of machine-learning-based coronary computed tomography (CT) angiography (cCTA)-derived fractional flow reserve (CT-FFR).BACKGROUNDCT-FFR is used reliably to detect lesion-specific ischemia. Novel CT-FFR algorithms using machine-learning artificial intelligence techniques perform fast and require less complex computational fluid dynamics. Yet, influence of CAC score on diagnostic performance of the machine-learning approach has not been investigated.METHODSA total of 482 vessels from 314 patients (age 62.3 +/- 9.3 years, 77% male) who underwent cCTA followed by invasive FFR were investigated from the MACHINE (Machine Learning based CT Angiography derived FFR: a Multi-center Registry) registry data. CAC scores were quantified using the Agatston convention. The diagnostic performance of CT-FFR to detect lesion-specific ischemia was assessed across all Agatston score categories (CAC 0, >0 to <100, 100 to <400, and >=$400) on a per-vessel level with invasive FFR as the reference standard.RESULTSThe diagnostic accuracy of CT-FFR versus invasive FFR was superior to cCTA alone on a per-vessel level (78% vs. 60%) and per patient level (83% vs. 73%) across all Agatston score categories. No statistically significant differences in the diagnostic accuracy, sensitivity, or specificity of CT-FFR were observed across the categories. CT-FFR showed good discriminatory power in vessels with high Agatston scores (CAC >= 400) and high performance in low-to-intermediate Agatston scores (CAC >0 to <400) with a statistically significant difference in the area under the receiver-operating characteristic curve (AUC) (AUC: 0.71 [95% confidence interval (CI): 0.57 to 0.85] vs. 0.85 [95% CI: 0.82 to 0.89], p = 0.04). CT-FFR showed superior diagnostic value over cCTA in vessels with high Agatston scores (CAC >= 400: AUC 0.71 vs. 0.55, p = 0.04) and low-to-intermediate Agatston scores (CAC >0 to <400: AUC 0.86 vs. 0.63, p < 0.001).CONCLUSIONSMachine-learning-based CT-FFR showed superior diagnostic performance over cCTA alone in CAC with a significant difference in the performance of CT-FFR as calcium burden/Agatston calcium score increased. (Machine Learning Based CT Angiography Derived FFR: a Multicenter, Registry [MACHINE] NCT02805621). (C) 2020 by the American College of Cardiology Foundation.
  •  
15.
  • Tesche, Matthias, et al. (författare)
  • Aviation effects on already-existing cirrus clouds
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining the effects of the formation of contrails within natural cirrus clouds has proven to be challenging. Quantifying any such effects is necessary if we are to properly account for the influence of aviation on climate. Here we quantify the effect of aircraft on the optical thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite lidar measurements. We show that there is a systematic, statistically significant increase in normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with adjacent areas immediately outside the tracks.
  •  
16.
  • Tesche, Matthias, et al. (författare)
  • Ground-based validation of CALIPSO observations of dust and smoke in the Cape Verde region
  • 2013
  • Ingår i: JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 118:7, s. 2889-2902
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based Raman lidar measurements during the second Saharan Mineral Dust Experiment (SAMUM-2) in 2008 were used for validation of measurements of the lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite within the dusty environment of the Cape Verde region. SAMUM-2 featured two one-month campaigns in January/February and May/June 2008 to cover different modes of aerosol transport to the tropical Atlantic: dust from northern Africa and biomass-burning smoke from western Africa during winter, and pure Saharan dust during summer. During the investigated time period, 33 CALIPSO overflights occurred at a distance of less than 500 km from the location of the ground-based lidar. Fifteen out of these 33 cases were found suitable for comparing the findings of the two instruments. The parameters for this comparison are the particle backscatter coefficient at 532 and 1064 nm, the extinction coefficient, the lidar ratio (aerosol type), and the particle depolarization ratio at 532 nm, as well as the backscatter-related angstrom ngstrom exponent for the wavelength pair 532/1064 nm. Best agreement was found for the 532 nm backscatter coefficient, while the 532 nm extinction coefficient is underestimated by up to 30%. The latter is due to the use of an effective dust lidar ratio that gives reliable backscatter coefficients but is not suitable to transform these to extinction coefficients. CALIPSO particle depolarization ratios provided in the current (version 3.01) aerosol profile product were found to be affected by a computing error and should be calculated from the perpendicular and total particle backscatter coefficients provided in the same data file. CALIPSO aerosol classification was found to be mostly correct but a demand for homogeneous aerosol layers could improve the retrieval. Suggestions for the improvement of the CALIPSO retrieval by introducing iterative procedures are provided.
  •  
17.
  • Tesche, Matthias, et al. (författare)
  • Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements
  • 2011
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 63:4, s. 677-694
  • Tidskriftsartikel (refereegranskat)abstract
    • Lidar measurements of mixed dust/smoke plumes over the tropical Atlantic ocean were carried out during the winter campaign of SAMUM-2 at Cape Verde. Profiles of backscatter and extinction coefficients, lidar ratios, and Angstrom exponents related to pure biomass-burning aerosol from southern West Africa were extracted from these observations. Furthermore, these findings were used as input for an inversion algorithm to retrieve microphysical properties of pure smoke. Seven measurement days were found suitable for the procedure of aerosol-type separation and successive inversion of optical data that describe biomass-burning smoke. We inferred high smoke lidar ratios of 87 +/- 17 sr at 355 nm and 79 +/- 17 sr at 532 nm. Smoke lidar ratios and Angstrom exponents are higher compared to the ones for the dust/smoke mixture. These numbers indicate higher absorption and smaller sizes for pure smoke particles compared to the dust/smoke mixture. Inversion of the smoke data set results in mean effective radii of 0.22 +/- 0.08 mu m with individual results varying between 0.10 and 0.36 mu m. The single-scattering albedo for pure biomass-burning smoke was found to vary between 0.63 and 0.89 with a very low mean value of 0.75 +/- 0.07. This is in good agreement with findings of airborne in situ measurements which showed values of 0.77 +/- 0.03. Effective radii from the inversion were similar to the ones found for the fine mode of the in situ size distributions.
  •  
18.
  • Tesche, Matthias, et al. (författare)
  • Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde
  • 2011
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 63:4, s. 649-676
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive lidar measurements of Saharan dust and biomass-burning smoke were performed with one airborne and three ground-based instruments in the framework of the second part of the SAharan Mineral dUst experiMent (SAMUM-2a) during January and February of 2008 at Cape Verde. Further lidar observations with one system only were conducted during May and June of 2008 (SAMUM-2b). The active measurements were supported by Sun photometer observations. During winter, layers of mineral dust from the Sahara and biomass-burning smoke from southern West Africa pass Cape Verde on their way to South America while pure dust layers cross the Atlantic on their way to the Caribbean during summer. The mean 500-nm aerosol optical thickness (AOT) observed during SAMUM-2a was 0.35 +/- 0.18. SAMUM-2a observations showed transport of pure dust within the lowermost 1.5 km of the atmospheric column. In the height range from 1.5 to 5.0 km, mixed dust/smoke layers with mean lidar ratios of 67 +/- 14 sr at 355 and 532 nm, respectively, prevailed. Within these layers, wavelength-independent linear particle depolarization ratios of 0.12-0.18 at 355, 532, and 710 nm indicate a large contribution (30-70%) of mineral dust to the measured optical properties. Angstrom exponents for backscatter and extinction of around 0.7 support this finding. Mean extinction coefficients in the height range between 2 and 4 km were 66 +/- 6 Mm(-1) at 355 nm and 48 +/- 5 Mm(-1) at 532 nm. Comparisons with airborne high-spectral-resolution lidar observations show good agreement within the elevated layers. 3-5 km deep dust layers where observed during SAMUM-2b. These layers showed optical properties similar to the ones of SAMUM-1 in Morocco with a mean 500-nm AOT of 0.4 +/- 0.2. Dust extinction coefficients were about 80 +/- 6 Mm(-1) at 355 and 532 nm. Dust lidar ratios were 53 +/- 10 sr at 355 and 532 nm, respectively. Dust depolarization ratios showed an increase with wavelength from 0.31 +/- 0.10 at 532 nm to 0.37 +/- 0.07 at 710 nm.
  •  
19.
  • Tesche, Matthias, et al. (författare)
  • Reconciling aerosol light extinction measurements from spaceborne lidar observations and in situ measurements in the Arctic
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:15, s. 7869-7882
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we investigate to what degree it is possible to reconcile continuously recorded particle light extinction coefficients derived from dry in situ measurements at Zeppelin station (78.92 degrees N, 11.85 degrees E; 475 m above sea level), Ny-lesund, Svalbard, that are recalculated to ambient relative humidity, as well as simultaneous ambient observations with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. To our knowledge, this represents the first study that compares spaceborne lidar measurements to optical aerosol properties from short-term in situ observations (averaged over 5 h) on a case-by-case basis. Finding suitable comparison cases requires an elaborate screening and matching of the CALIOP data with respect to the location of Zeppelin station as well as the selection of temporal and spatial averaging intervals for both the ground-based and spaceborne observations. Reliable reconciliation of these data cannot be achieved with the closest-approach method, which is often used in matching CALIOP observations to those taken at ground sites. This is due to the transport pathways of the air parcels that were sampled. The use of trajectories allowed us to establish a connection between spaceborne and ground-based observations for 57 individual overpasses out of a total of 2018 that occurred in our region of interest around Svalbard (0 to 25 degrees E, 75 to 82 degrees N) in the considered year of 2008. Matches could only be established during winter and spring, since the low aerosol load during summer in connection with the strong solar background and the high occurrence rate of clouds strongly influences the performance and reliability of CALIOP observations. Extinction coefficients in the range of 2 to 130 Mm(-1) at 532 nm were found for successful matches with a difference of a factor of 1.47 (median value for a range from 0.26 to 11.2) between the findings of in situ and spaceborne observations (the latter being generally larger than the former). The remaining difference is likely to be due to the natural variability in aerosol concentration and ambient relative humidity, an insufficient representation of aerosol particle growth, or a misclassification of aerosol type (i.e., choice of lidar ratio) in the CALIPSO retrieval.
  •  
20.
  • Tesche, Matthias, et al. (författare)
  • Spaceborne observations of low surface aerosol concentrations in the Stockholm region
  • 2016
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 68
  • Tidskriftsartikel (refereegranskat)abstract
    • This article investigates the feasibility of using spaceborne observations of aerosol optical thickness (AOT) derived with the Moderate Resolution Imaging Spectroradiometer (MODIS) for monitoring of fine particulate matter (PM2.5) in an environment of low aerosol loading. Previous studies of the AOT-to-PM2.5 relationship benefit from the large range of observed values. The Stockholm region features a comprehensive network of ground-based monitoring stations that generally show PM2.5 values <20 mu g m(-3). MODIS AOT at 555nm is usually <0.20 and in good agreement with ground-based sun photometer observations in this region. We use MODIS Collection 5 AOT data with a horizontal resolution of 10km x 10km and ground-based in-situ PM2.5 observations to derive an AOT-to-PM2.5 relationship that can be used to estimate fields of PM2.5. This has been carried out with respect to the months from April to September of the period 2000-2013. Relative average absolute deviations of 33-55 % (mean of 45 %) are obtained between MODIS-retrieved and ground-based PM2.5. The root mean square error is 0.2159 mu gm(-3) between retrieved and measured PM2.5. From spaceborne lidar observations, it is found that elevated aerosol layers are generally sparse in the Stockholm region. This favours remote sensing of PM2.5 from space. The deviations found between measured and retrieved PM2.5 are mainly attributed to infrequent situations of inhomogeneous aerosol layering for which column-integrated observations cannot be connected to surface conditions. Using MODIS Collection 6 data with a resolution of 3km x 3 km in a case study actually gives far fewer results than the coarser Collection 5 product. This is explained by the complex geography of the Stockholm region with a coastline and an abundance of lakes, which seems to induce biases in the retrieval of AOT at higher spatial resolution.
  •  
21.
  • Tesche, Matthias, et al. (författare)
  • Volcanic ash over Scandinavia originating from the Grimsvotn eruptions in May 2011
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. D09201-
  • Tidskriftsartikel (refereegranskat)abstract
    • A volcanic ash plume that originated from the eruptions of Iceland's Grimsvotn volcano in May 2011 was observed over the Nordic countries using a combination of satellite observations and ground-based measurements. The dispersion of the plume was investigated using London VAAC ash forecasts and MODIS observations. Hourly PM10 concentrations at air quality monitoring stations in the southern parts of Norway, Sweden, and Finland exceeded 100 mu g/m(3) for several hours. The FLEXPART dispersion model has been used to confirm the Icelandic origin of the sampled air masses. Column-integrated quantities from a Sun photometer and vertical profiles from a Raman lidar were used to estimate the ash concentration within an elevated layer over Stockholm. A lofted layer with an optical thickness of 0.3 at 532 nm passed Stockholm in the morning hours of 25 May 2011. Considering a realistic range of coarse-mode fractions and specific ash extinctions from the literature, an estimated range of maximum ash mass concentration of 150-340 mu g/m(3) was derived from the lidar measurements at an altitude of 2.8 km. The lower estimate of the lidar-derived ash mass concentrations within the planetary boundary layer was found to be in good agreement with surface observations of PM10.
  •  
22.
  • Wagner, J., et al. (författare)
  • Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust
  • 2013
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 6:7, s. 1707-1724
  • Tidskriftsartikel (refereegranskat)abstract
    • The Lidar/Radiometer Inversion Code (LIRIC) combines the multiwavelength lidar technique with sun/sky photometry and allows us to retrieve vertical profiles of particle optical and microphysical properties separately for fine-mode and coarse-mode particles. After a brief presentation of the theoretical background, we evaluate the potential of LIRIC to retrieve the optical and microphysical properties of irregularly shaped dust particles. The method is applied to two very different aerosol scenarios: a strong Saharan dust outbreak towards central Europe and an Eyjafjallajokull volcanic dust event. LIRIC profiles of particle mass concentrations for the coarse-mode as well as for the non-spherical particle fraction are compared with results for the non-spherical particle fraction as obtained with the polarization-lidar-based POLIPHON method. Similar comparisons for fine-mode and spherical particle fractions are presented also. Acceptable agreement between the different dust mass concentration profiles is obtained. LIRIC profiles of optical properties such as particle backscatter coefficient, lidar ratio, Angstrom exponent, and particle depolarization ratio are compared with direct Raman lidar observations. Systematic deviations between the LIRIC retrieval products and the Raman lidar measurements of the desert dust lidar ratio, depolarization ratio, and spectral dependencies of particle backscatter and lidar ratio point to the applied spheroidal-particle model as main source for these uncertainties in the LIRIC results.
  •  
23.
  • Zieger, Paul, et al. (författare)
  • Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:13, s. 7247-7267
  • Tidskriftsartikel (refereegranskat)abstract
    • Ambient aerosol particles can take up water and thus change their optical properties depending on the hygroscopicity and the relative humidity (RH) of the surrounding air. Knowledge of the hygroscopicity effect is of crucial importance for radiative forcing calculations and is also needed for the comparison or validation of remote sensing or model results with in situ measurements. Specifically, particle light scattering depends on RH and can be described by the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value (RH < 30-40 %). Here, we present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station at Hyytiala, Finland. Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground level by a humidified nephelometer is found to be generally lower (e.g. 1.63 +/- 0.22 at RH = 85% and lambda = 525 nm) than observed at other European sites. One reason is the high organic mass fraction of the aerosol encountered at Hyytiala to which f(RH) is clearly anti-correlated (R-2 approximate to 0.8). A simplified parametrization of f(RH) based on the measured chemical mass fraction can therefore be derived for this aerosol type. A trajectory analysis revealed that elevated values of f(RH) and the corresponding elevated inorganic mass fraction are partially caused by transported hygroscopic sea spray particles. An optical closure study shows the consistency of the ground-based in situ measurements. Our measurements allow to determine the ambient particle light extinction coefficient using the measured f(RH). By combining the ground-based measurements with intensive aircraft measurements of the particle number size distribution and ambient RH, columnar values of the particle extinction coefficient are determined and compared to columnar measurements of a co-located AERONET sun photometer. The water uptake is found to be of minor importance for the column-averaged properties due to the low particle hygroscopicity and the low RH during the daytime of the summer months. The in situ derived aerosol optical depths (AOD) clearly correlate with directly measured values of the sun photometer but are substantially lower compared to the directly measured values (factor of similar to 2-3). The comparison degrades for longer wavelengths. The disagreement between in situ derived and directly measured AOD is hypothesized to originate from losses of coarse and fine mode particles through dry deposition within the canopy and losses in the in situ sampling lines. In addition, elevated aerosol layers (above 3 km) from long-range transport were observed using an aerosol lidar at Kuopio, Finland, about 200 km east-northeast of Hyytiala. These elevated layers further explain parts of the disagreement.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy