SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tesson C) "

Sökning: WFRF:(Tesson C)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Tesson, Sylvie V M, et al. (författare)
  • Airborne Microalgae: Insights, Opportunities, and Challenges
  • 2016
  • Ingår i: Applied and Environmental Microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 82:7, s. 1978-1991
  • Tidskriftsartikel (refereegranskat)abstract
    • Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions.
  •  
8.
  • Tesson, Sylvie V M, et al. (författare)
  • Integrating microorganism and macroorganism dispersal: modes, techniques and challenges with particular focus on co-dispersal
  • 2015
  • Ingår i: Ecoscience. - : Informa UK Limited. - 1195-6860. ; 22:2-4, s. 109-124
  • Tidskriftsartikel (refereegranskat)abstract
    • Whatever their size and the ecosystem they live in, all organisms may disperse at some stage of their life cycle. Dispersal dynamics are to a varying extent dependent on organismal size, life history, ecological niche, survival capacities and phylogeny. Moves towards a synthesis in dispersal ecology have focused primarily on vertebrates and higher plants, yet recent studies suggest that the dispersal of microorganisms and macroorganisms has much more in common than previously assumed. The dispersal of one organism enables co-dispersal for many others, smaller in size. There is an increasing need for a more integrated approach to study dispersal within the context of organismal interactions and their environments. Such an approach is facilitated by recent developments of powerful indirect techniques that enable tracking of microorganisms and macroorganisms over multiple spatial and temporal scales. Likewise, dispersal modelling and theoretical models of the consequences of dispersal can inspire empirical studies across the entire size spectrum. Simultaneously studying the relationships between dispersal of microorganisms and macroorganisms, and accounting for dispersal through time and space, will allow us to better understand the functioning and dynamics of communities and ecosystems, and to make better predictions of future dispersal patterns, changes in biodiversity and connectivity.
  •  
9.
  • Tesson, Sylvie V.M., et al. (författare)
  • Mendelian Inheritance Pattern and High Mutation Rates of Microsatellite Alleles in the Diatom Pseudo-nitzschia multistriata.
  • 2012
  • Ingår i: Protist. - : Elsevier BV. - 1434-4610.
  • Tidskriftsartikel (refereegranskat)abstract
    • The diatom Pseudo-nitzschia multistriata exhibits a diplontic life cycle composed of an extensive phase of vegetative cell division and a brief phase of sexual reproduction. To explore genotypic stability, we genotyped seven polymorphic microsatellite loci in 26 monoclonal strains over 3-16 months in a culture maintenance regime. Moreover, to assess inheritance patterns of the microsatellite alleles, we genotyped 246 F1 strains resulting from four mating experiments between parental strains of know genotype. Results generally conformed expectations according to Mendelian inheritance patterns, but deviations were detected indicating mutations during sexual reproduction. A total of forty-two mutations were detected in the clonal cultures over time. Microsatellites with more core-repeats accumulated mutations faster. The mutation rate varied significantly across loci and strains. A binomial mass function and a computer simulation showed that the mutation rate was significantly higher during the first months of culture (μ≈3×10(-3) per locus per cell division) and decreased to μ≈1×10(-3) in the strains kept for 16 months. Our results suggest that genetic mutations acquired in both the vegetative phase and sexual reproduction add to the allelic diversity of microsatellites, and hence to the genotypic variation present in a natural population.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy