SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tian Fuqiang) "

Sökning: WFRF:(Tian Fuqiang)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Arheimer, Berit, et al. (författare)
  • The IAHS Science for Solutions decade, with Hydrology Engaging Local People IN a Global world (HELPING)
  • 2024
  • Ingår i: Hydrological Sciences Journal. - 0262-6667 .- 2150-3435.
  • Tidskriftsartikel (refereegranskat)abstract
    • The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions - may it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes.
  •  
3.
  • Blösch, Günter, et al. (författare)
  • Twenty-three unsolved problems in hydrology (UPH) - a community perspective
  • 2019
  • Ingår i: Hydrological Sciences Journal. - : Informa UK Limited. - 0262-6667 .- 2150-3435. ; 64:10, s. 1141-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.
  •  
4.
  • Di Baldassarre, Giuliano, et al. (författare)
  • Sociohydrology : Scientific Challenges in Addressing the Sustainable Development Goals
  • 2019
  • Ingår i: Water resources research. - 0043-1397 .- 1944-7973. ; 55:8, s. 6327-6355
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sustainable Development Goals (SDGs) of the United Nations Agenda 2030 represent an ambitious blueprint to reduce inequalities globally and achieve a sustainable future for all mankind. Meeting the SDGs for water requires an integrated approach to managing and allocating water resources, by involving all actors and stakeholders, and considering how water resources link different sectors of society. To date, water management practice is dominated by technocratic, scenario-based approaches that may work well in the short term but can result in unintended consequences in the long term due to limited accounting of dynamic feedbacks between the natural, technical, and social dimensions of human-water systems. The discipline of sociohydrology has an important role to play in informing policy by developing a generalizable understanding of phenomena that arise from interactions between water and human systems. To explain these phenomena, sociohydrology must address several scientific challenges to strengthen the field and broaden its scope. These include engagement with social scientists to accommodate social heterogeneity, power relations, trust, cultural beliefs, and cognitive biases, which strongly influence the way in which people alter, and adapt to, changing hydrological regimes. It also requires development of new methods to formulate and test alternative hypotheses for the explanation of emergent phenomena generated by feedbacks between water and society. Advancing sociohydrology in these ways therefore represents a major contribution toward meeting the targets set by the SDGs, the societal grand challenge of our time. Plain Language Summary Water crises that humanity faces are increasingly connected and are growing in complexity. As such, they require a more integrated approach in managing water resources, which involves all actors and stakeholders and considers how water resources link different sectors of society. Yet, water management practice is still dominated by technocratic approaches, which emphasize technical solutions. While these approaches may work in the short-term, they often result in unintended consequences in the long-term. Sociohydrology is developing a generalizable understanding of the interactions and feedbacks between natural,technical and social processes, which can improve water management practice. As such, advancing sociohydrology can contribute to address the global water crises and meet the water-related targets defined by the United Nations' Sustainable Development Goals.
  •  
5.
  • Jiang, Ruijie, et al. (författare)
  • Substantial increase in future fluvial flood risk projected in China’s major urban agglomerations
  • 2023
  • Ingår i: Communications Earth and Environment. - 2662-4435. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Urban land will face high fluvial flood risk against the background of climate change and urban expansion. The effect of urban spatial expansion, instead of densification of assets within existing urban cells, on flood risk has rarely been reported. Here, we project the future flood risk of seven urban agglomerations in China, home to over 750 million people. The inundated urban land areas in the future are projected to be 4 to 19 times that at present. Without considering the urban spatial expansion, the inundated urban land areas will be underestimated by 10-50%. Urban land is more likely to be inundated than non-urban land, and the newly-developed urban land will be inundated more easily than the historical urban land. The results demonstrate the urgency of integrating climate change mitigation, reasonable urban land expansion, and increased flood protection levels to minimize the flood risk in urban land.
  •  
6.
  • Kreibich, Heidi, et al. (författare)
  • Panta Rhei benchmark dataset : Socio-hydrological data of paired events of floods and droughts
  • 2023
  • Ingår i: Earth System Science Data. - : Copernicus Publications. - 1866-3508 .- 1866-3516. ; 15:5, s. 2009-2023
  • Tidskriftsartikel (refereegranskat)abstract
    • As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is currently a lack of comprehensive, empirical data about the processes, interactions, and feedbacks in complex human-water systems leading to flood and drought impacts. Here we present a benchmark dataset containing socio-hydrological data of paired events, i.e. two floods or two droughts that occurred in the same area. The 45 paired events occurred in 42 different study areas and cover a wide range of socio-economic and hydro-climatic conditions. The dataset is unique in covering both floods and droughts, in the number of cases assessed and in the quantity of socio-hydrological data. The benchmark dataset comprises (1) detailed review-style reports about the events and key processes between the two events of a pair; (2) the key data table containing variables that assess the indicators which characterize management shortcomings, hazard, exposure, vulnerability, and impacts of all events; and (3) a table of the indicators of change that indicate the differences between the first and second event of a pair. The advantages of the dataset are that it enables comparative analyses across all the paired events based on the indicators of change and allows for detailed context- and location-specific assessments based on the extensive data and reports of the individual study areas. The dataset can be used by the scientific community for exploratory data analyses, e.g. focused on causal links between risk management; changes in hazard, exposure and vulnerability; and flood or drought impacts. The data can also be used for the development, calibration, and validation of socio-hydrological models. The dataset is available to the public through the GFZ Data Services (Kreibich et al., 2023, 10.5880/GFZ.4.4.2023.001).
  •  
7.
  • Kreibich, Heidi, et al. (författare)
  • The challenge of unprecedented floods and droughts in risk management
  • 2022
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 608:7921, s. 80-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Risk management has reduced vulnerability to floods and droughts globally, yet their impacts are still increasing. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change.
  •  
8.
  • Noori, Roohollah, et al. (författare)
  • PODMT3DMS-Tool : proper orthogonal decomposition linked to the MT3DMS model for nitrate simulation in aquifers
  • 2020
  • Ingår i: Hydrogeology Journal. - : Springer Science and Business Media LLC. - 1431-2174 .- 1435-0157.
  • Tidskriftsartikel (refereegranskat)abstract
    • The PODMT3DMS-Tool, which consists of a proper orthogonal decomposition (POD) linked to the Modular Transport 3-Dimensional Multi Species (MT3DMS) code for nitrate simulation in groundwater, is introduced. POD, as a statistical technique, reduces a large amount of information produced by the MT3DMS model to provide the main components of the PODMT3DMS-Tool, i.e., space- and time-dependent terms of nitrate. The low-dimensional components represent time- and space-dependent factors in the aquifer response such as hydraulic, hydrogeological and water quality variables represented in the simulation using the MT3DMS model. The PODMT3DMS-Tool is thus a combined statistical and conceptual model with a simple structure and comparable accuracy to MT3DMS. Practical application of the PODMT3DMS-Tool to the Karaj Aquifer in Iran during 6 years revealed agreement between nitrate concentrations simulated by the PODMT3DMS-Tool and MT3DMS, with a mean absolute error of less than 0.5 mg/L in most parts of the aquifer. Moreover, the PODMT3DMS-Tool needed only about 10% of the calculation time required by MT3DMS. The PODMT3DMS-Tool can be used in predict nitrate concentration in the Karaj Aquifer, while its simplicity also makes it highly interesting for other water resources problems.
  •  
9.
  • Noori, Roohollah, et al. (författare)
  • Recent and future trends in sea surface temperature across the persian gulf and gulf of Oman
  • 2019
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change's effect on sea surface temperature (SST) at the regional scale vary due to driving forces that include potential changes in ocean circulation and internal climate variability, ice cover, thermal stability, and ocean mixing layer depth. For a better understanding of future effects, it is important to analyze historical changes in SST at regional scales and test prediction techniques. In this study, the variation in SST across the Persian Gulf and Gulf of Oman (PG&GO) during the past four decades was analyzed and predicted to the end of 21st century using a proper orthogonal decomposition (POD) model. As input, daily optimum interpolation SST anomaly (DOISSTA) data, available from the National Oceanic and Atmospheric Administration of the United States, were used. Descriptive analyses and POD results demonstrated a gradually increasing trend in DOISSTA in the PG&GO over the past four decades. The spatial distribution of DOISSTA indicated: (1) that shallow parts of the Persian Gulf have experienced minimum and maximum values of DOISSTA and (2) high variability in DOISSTA in shallow parts of the Persian Gulf, including some parts of southern and northwestern coasts. Prediction of future SST using the POD model revealed the highest warming during summer in the entire PG&GO by 2100 and the lowest warming during fall and winter in the Persian Gulf and Gulf of Oman, respectively. The model indicated that monthly SST in the Persian Gulf may increase by up to 4.3 °C in August by the turn of the century. Similarly, mean annual changes in SST across the PG&GO may increase by about 2.2 °C by 2100.
  •  
10.
  •  
11.
  •  
12.
  • Pande, Saket, et al. (författare)
  • Never Ask for a Lighter Rain but a Stronger Umbrella
  • 2022
  • Ingår i: Frontiers in Water. - : Frontiers Media S.A.. - 2624-9375. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • In a recent editorial in the journal Nature Sustainability, the editors raised the concern that journal submissions on water studies appear too similar. The gist of the editorial: "too many publications and not enough ideas." In this response, we contest this notion, and point to the numerous new ideas that result from taking a broader view of the water science field. Drawing inspiration from a recently hosted conference geared at transcending traditional disciplinary silos and forging new paradigms for water research, we are, in fact, enthusiastic and optimistic about the ways scientists are investigating political, economic, historical, and cultural intersections toward more just and sustainable human-water relations and ways of knowing.
  •  
13.
  • Yu, David J., et al. (författare)
  • On capturing human agency and methodological interdisciplinarity in socio-hydrology research
  • 2022
  • Ingår i: Hydrological Sciences Journal. - : Taylor & Francis. - 0262-6667 .- 2150-3435. ; 67:13, s. 1905-1916
  • Tidskriftsartikel (refereegranskat)abstract
    • Socio-hydrology has expanded and been effective in exposing the hydrological community to ideas and approaches from other scientific disciplines, and social sciences in particular. Yet it still has much to explore regarding how to capture human agency and how to combine different methods and disciplinary views from both the hydrological and the social sciences to develop knowledge. A useful starting ground is noting that the complexity of human–water relations is due to interactions not only across spatial and temporal scales but also across different organizational levels of social systems. This calls for consideration of another analytical scale, the human organizational scale, and interdisciplinarity in study methods. Based on the papers published in this journal’s Special Issue Advancing Socio-hydrology over 2019–2022, this paper illuminates how the understanding of coupled human–water systems can be strengthened by capturing the multi-level nature of human decision making and by applying an interdisciplinary multi-method approach.
  •  
14.
  • Zhang, Zhongli, et al. (författare)
  • Research on the heat resistance and electrical properties of fluorinated polyimide/nano-Al2O3/nano-Si3N4 composite materials
  • 2024
  • Ingår i: Polymer. - : Elsevier. - 0032-3861 .- 1873-2291. ; 294
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyimide (PI) refers to a polymer containing an imide ring characteristic structure on the main chain. It has excellent thermal stability, insulation properties and other characteristics. The Tesla transformer is the core component of the primary pulse source of the high -current electron beam accelerator. It is also an essential component of the energy storage pulse power supply. Therefore, it has broad application prospects in the fields of national defense and civil industry. If the insulation performance of the turn -to -turn coils of the Tesla transformer does not meet the standards, it will break down during high -voltage corona discharge, causing transformer failure. Therefore, it is crucial to improve the insulation performance of Tesla transformer inter -turn wrapping materials. The incorporation of fluorinecontaining groups has proven to be a transformative strategy that significantly enhances the physical, chemical, optical, and electrical properties of PI films. In addition, numerous studies have demonstrated that introducing inorganic fillers into the polyimide matrix can substantially enhance the insulating properties of polyimide films. This paper specifically concentrates on elevating the insulating and thermal attributes of polyimide. Initially, a range of polyimide films was synthesized for performance assessment by employing various fluorinated dianhydride and diamine components, utilizing them as substrates. Then, we used nanosilicon nitride (nano-Si3N4) and nano -alumina (nano-Al2O3) as doping phases to prepare PI composite films, which reduced the dielectric constant and increased the breakdown strength.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14
Typ av publikation
tidskriftsartikel (13)
annan publikation (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Tian, Fuqiang (11)
Di Baldassarre, Giul ... (6)
Kreibich, Heidi (6)
Pande, Saket (5)
Sivapalan, Murugesu (5)
Buytaert, Wouter (4)
visa fler...
Van Loon, Anne F. (3)
Mazzoleni, Maurizio (3)
Ridolfi, Elena (3)
Wagener, Thorsten (3)
Viglione, Alberto (3)
Cudennec, Christophe (3)
Razavi, Saman (3)
Mezheyeuski, Artur (2)
Glimelius, Bengt (2)
Krause, Stefan (2)
Berndtsson, Ronny (2)
Uhlén, Mathias (2)
AghaKouchak, Amir (2)
Huning, Laurie S. (2)
Lundin, Emma (2)
Palmqvist, Richard (2)
Ljuslinder, Ingrid (2)
Arheimer, Berit (2)
Sörensen, Johanna (2)
Frappart, Frédéric (2)
Pimentel, Rafael (2)
Castellarin, Attilio (2)
Grimaldi, Salvatore (2)
Lupton, Claire (2)
Shafiei, Mojtaba (2)
Bartosova, Alena (2)
Batelaan, Okke (2)
Bogaard, Thom (2)
Fiori, Aldo (2)
Hrachowitz, Markus (2)
Khatami, Sina (2)
Liu, Junguo (2)
Montanari, Alberto (2)
Papacharalampous, Ge ... (2)
Szolgay, Jan (2)
Tyralis, Hristos (2)
Volpi, Elena (2)
Lavado-Casimiro, Wal ... (2)
Mobini, Shifteh (2)
Noori, Roohollah (2)
Freer, Jim (2)
Sharma, Sanjib (2)
Stoelzle, Michael (2)
Wendt, Doris E. (2)
visa färre...
Lärosäte
Uppsala universitet (9)
Lunds universitet (5)
Kungliga Tekniska Högskolan (2)
Göteborgs universitet (1)
Stockholms universitet (1)
Malmö universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Teknik (4)
Samhällsvetenskap (3)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy