SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Timm Rainer) "

Sökning: WFRF:(Timm Rainer)

  • Resultat 1-25 av 73
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abelev, Betty, et al. (författare)
  • Measurement of prompt J/psi and beauty hadron production cross sections at mid-rapidity in pp collisions at root s=7 TeV
  • 2012
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at root s = 7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L-int = 5.6 nb(-1). The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p(t) > 1,3 GeV/c and rapidity vertical bar y vertical bar < 0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the psi(2S) and chi(c) resonances, is sigma(prompt J/psi) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 8.3 +/- 0.8(stat.) +/- 1.1 (syst.)(-1.4)(+1.5) (syst. pol.) mu b. The cross section for the production of b-hadrons decaying to J/psi with p(t) > 1.3 GeV/c and vertical bar y vertical bar < 0.9 is a sigma(J/psi <- hB) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 1.46 +/- 0.38 (stat.)(-0.32)(+0.26) (syst.) mu b. The results are compared to QCD model predictions. The shape of the p(t) and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b (b) over bar pair total cross section and d sigma/dy at mid-rapidity.
  •  
2.
  • Abelev, Betty, et al. (författare)
  • Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC
  • 2012
  • Ingår i: Journal of High Energy Physics. - 1029-8479. ; :7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.
  •  
3.
  • Athle, Robin, et al. (författare)
  • Effects of TiN Top Electrode Texturing on Ferroelectricity in Hf1-xZrxO2
  • 2021
  • Ingår i: ACS applied materials & interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:9, s. 11089-11095
  • Tidskriftsartikel (refereegranskat)abstract
    • Ferroelectric memories based on hafnium oxide are an attractive alternative to conventional memory technologies due to their scalability and energy efficiency. However, there are still many open questions regarding the optimal material stack and processing conditions for reliable device performance. Here, we report on the impact of the sputtering process conditions of the commonly used TiN top electrode on the ferroelectric properties of Hf1-xZrxO2. By manipulating the deposition pressure and chemistry, we control the preferential orientation of the TiN grains between (111) and (002). We observe that (111) textured TiN is superior to (002) texturing for achieving high remanent polarization (Pr). Furthermore, we find that additional nitrogen supply during TiN deposition leads to >5× greater endurance, possibly by limiting the scavenging of oxygen from the Hf1-xZrxO2 film. These results help explain the large Pr variation reported in the literature for Hf1-xZrxO2/TiN and highlights the necessity of tuning the top electrode of the ferroelectric stack for successful device implementation.
  •  
4.
  • Athle, Robin, et al. (författare)
  • Improved Endurance of Ferroelectric HfxZr1–xO2 Integrated on InAs Using Millisecond Annealing
  • 2022
  • Ingår i: Advanced Materials Interfaces. - : Wiley. - 2196-7350. ; 9:27
  • Tidskriftsartikel (refereegranskat)abstract
    • Ferroelectric HfxZr1–xO2 (HZO) is typically achieved by crystallization of an amorphous thin film via rapid thermal processing (RTP) at time scales of seconds to minutes. For integration on III–V semiconductors, this approach can severely degrade the sensitive HZO/III–V interface. To evaluate whether a reduced thermal budget can improve the interface quality, millisecond duration thermal anneals are utilized using a flash lamp annealer (FLA) on HZO/InAs capacitors. Through thorough electrical characterization such as polarization hysteresis, endurance, and capacitance-voltage measurements, as well as synchrotron-based chemical interface characterization, the FLA and RTP treatments are compared and the FLA results are found in lower interface defect density and higher endurance, but also have generally lower remanent polarization (Pr) compared to RTP. Additionally, ways to achieve high Pr and low interface defect density using multiple lower energy flashes, as well as by pre-crystallization during the ALD growth step are investigated. Using FLA, Pr exceeding 20 µC cm−2 is achieved, with extended endurance properties compared to RTP treatment and a considerably decreased defect density, indicative of a higher quality HZO/InAs interface. This work presents valuable insight into the successful integration of ferroelectric HZO on low thermal budget III–V semiconductors.
  •  
5.
  • Bahrami, Danial, et al. (författare)
  • Impact of Electrical Current on Single GaAs Nanowire Structure
  • 2021
  • Ingår i: Physica Status Solidi (B) Basic Research. - : Wiley. - 0370-1972. ; 258:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of electrical current on the structure of single free-standing Be-doped GaAs nanowires grown on a Si 111 substrate is investigated. Single nanowires have been structurally analyzed by X-ray nanodiffraction using synchrotron radiation before and after the application of an electrical current. The conductivity measurements on single nanowires in their as-grown geometry have been realized via W-probes installed inside a dual-beam focused ion beam/scanning electron microscopy chamber. Comparing reciprocal space maps of the 111 Bragg reflection, extracted perpendicular to the nanowire growth axis before and after the conductivity measurement, the structural impact of the electrical current is evidenced, including deformation of the hexagonal nanowire cross section, tilting, and bending with respect to the substrate normal. For electrical current densities below 30 A mm−2, the induced changes in the reciprocal space maps are negligible. However, for a current density of 347 A mm−2, the diffraction pattern is completely distorted. The mean cross section of the illuminated nanowire volume is reconstructed from the reciprocal space maps before and after the application of electrical current. Interestingly, the elongation of two pairs of opposing side facets accompanied by shrinkage of the third pair of facets is found. The variations in the nanowire diameter, as well as their tilt and bending, are confirmed by scanning electron microscopy. To explain these findings, material melting due to Joule heating during voltage/current application accompanied by anisotropic deformations induced by the W-probe is suggested.
  •  
6.
  • Benter, Sandra, et al. (författare)
  • Tuneable 2D surface Bismuth incorporation on InAs nanosheets
  • 2023
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 15:21, s. 9551-9559
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical bonding at the interface between compound semiconductors and metals is central in determining electronic and optical properties. In this study, new opportunities for controlling this are presented for nanostructures. We investigate Bi adsorption on 2D wurtzite InAs (1120) nanosheets and find that temperature-controlled Bi incorporation in either anionic- or cationic-like bonding is possible in the easily accesible range between room temperature and 400 degrees C. This separation could not be achieved for ordinary zinc blende InAs(110) surfaces. As the crystal structures of the two surfaces have identical nearest neighbour configurations, this indicates that overall geometric differences can significantly alter the adsorption and incorporation. Ab initio theoretical modelling confirms observed adsorption results, but indicate that both the formation energies as well as kinetic barriers contributes to the observed temperature dependent behaviour. Further, we find that the Bi adsorption rate can differ by at least 2.5 times between the two InAs surfaces while being negligible for standard Si substrates under similar deposition conditions. This, in combination with the observed interface control, provides an excellent opportunity for tuneable Bi integration on 2D InAs nanostructures on standard Si substrates.
  •  
7.
  • Bi, Zhaoxia, et al. (författare)
  • InGaN Platelets : Synthesis and Applications toward Green and Red Light-Emitting Diodes
  • 2019
  • Ingår i: Nano Letters. - : American Chemical Society. - 1530-6984 .- 1530-6992. ; 19:5, s. 2832-2839
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we present a method to synthesize arrays of hexagonal InGaN submicrometer platelets with a top c-plane area having an extension of a few hundred nanometers by selective area metal-organic vapor-phase epitaxy. The InGaN platelets were made by in situ annealing of InGaN pyramids, whereby InGaN from the pyramid apex was thermally etched away, leaving a c-plane surface, while the inclined {101Ì1} planes of the pyramids were intact. The as-formed c-planes, which are rough with islands of a few tens of nanometers, can be flattened with InGaN regrowth, showing single bilayer steps and high-quality optical properties (full width at half-maximum of photoluminescence at room temperature: 107 meV for In 0.09 Ga 0.91 N and 151 meV for In 0.18 Ga 0.82 N). Such platelets offer surfaces having relaxed lattice constants, thus enabling shifting the quantum well emission from blue (as when grown on GaN) to green and red. For single InGaN quantum wells grown on the c-plane of such InGaN platelets, a sharp interface between the quantum well and the barriers was observed. The emission energy from the quantum well, grown under the same conditions, was shifted from 2.17 eV on In 0.09 Ga 0.91 N platelets to 1.95 eV on In 0.18 Ga 0.82 N platelets as a result of a thicker quantum well and a reduced indium pulling effect on In 0.18 Ga 0.82 N platelets. On the basis of this method, prototype light-emitting diodes were demonstrated with green emission on In 0.09 Ga 0.91 N platelets and red emission on In 0.18 Ga 0.82 N platelets.
  •  
8.
  • Bi, Zhaoxia, et al. (författare)
  • Realization of Ultrahigh Quality InGaN Platelets to be Used as Relaxed Templates for Red Micro-LEDs
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : NLM (Medline). - 1944-8244 .- 1944-8252. ; 12:15, s. 17845-17851
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, arrays of predominantly relaxed InGaN platelets with indium contents of up to 18%, free from dislocations and offering a smooth top c-plane, are presented. The InGaN platelets are grown by metal-organic vapor phase epitaxy on a dome-like InGaN surface formed by chemical mechanical polishing of InGaN pyramids defined by 6 equivalent {101̅1} planes. The dome-like surface is flattened during growth, through the formation of bunched steps, which are terminated when reaching the inclined {101̅1} planes. The continued growth takes place on the flattened top c-plane with single bilayer surface steps initiated at the six corners between the c-plane and the inclined {101̅1} planes, leading to the formation of high-quality InGaN layers. The top c-plane of the as-formed InGaN platelets can be used as a high-quality template for red micro light-emitting diodes.
  •  
9.
  • Bi, Zhaoxia, et al. (författare)
  • Self-assembled InN quantum dots on side facets of GaN nanowires
  • 2018
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 123:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-assembled, atomic diffusion controlled growth of InN quantum dots was realized on the side facets of dislocation-free and c-oriented GaN nanowires having a hexagonal cross-section. The nanowires were synthesized by selective area metal organic vapor phase epitaxy. A 3 Å thick InN wetting layer was observed after growth, on top of which the InN quantum dots formed, indicating self-assembly in the Stranski-Krastanow growth mode. We found that the InN quantum dots can be tuned to nucleate either preferentially at the edges between GaN nanowire side facets, or directly on the side facets by tuning the adatom migration by controlling the precursor supersaturation and growth temperature. Structural characterization by transmission electron microscopy and reciprocal space mapping show that the InN quantum dots are close to be fully relaxed (residual strain below 1%) and that the c-planes of the InN quantum dots are tilted with respect to the GaN core. The strain relaxes mainly by the formation of misfit dislocations, observed with a periodicity of 3.2 nm at the InN and GaN hetero-interface. The misfit dislocations introduce I1 type stacking faults (...ABABCBC...) in the InN quantum dots. Photoluminescence investigations of the InN quantum dots show that the emissions shift to higher energy with reduced quantum dot size, which we attribute to increased quantum confinement.
  •  
10.
  • Colvin, Jovana, et al. (författare)
  • Local defect-enhanced anodic oxidation of reformed GaN nanowires
  • 2020
  • Ingår i: Physical Review Materials. - 2475-9953. ; 4:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding formation and distribution of defects in GaN substrates and device layers is needed to improve device performance in rf and power electronics. Here we utilize conductive atomic force microscopy (c-AFM) for studying defect-related leakage paths in an unintentionally doped GaN film formed by nanowire reformation. A nanoscopic Schottky contact is formed between the c-AFM probe and the GaN surface, which, under reverse-bias conditions, reveals local leakage currents at the positions of the nanowires. Cathodoluminescence shows these areas to be dominated by yellow-band luminescence, in contrast to the surrounding GaN matrix, which mainly shows near-band-gap luminescence. These results are attributed to a high density of native and residual defects, confined to the nanowires. In addition, we use anodic oxidation to map defect-related conductive paths through locally induced growth of gallium oxide. The oxide yield, which is known to depend on the local electric field strength between the AFM tip and the sample, correlates well with the level of reverse-bias leakage current. Local irregularities in oxide height reveal extended oxidation attributed to defect-related deep-level states. Thisis confirmed by controlled dissolution of the oxide in NaOH, showing that a deeper oxide film is grown over areas where defect-related conductive paths are formed. Finally, we demonstrate how this approach can be used as a quick and easy diagnostic tool for evaluating the influence of specific growth conditions and process steps on defect-induced leakage current levels and defect distribution in GaN structures, demonstrating its potential for accelerated test of leakage degradation at critical positions in GaN-based devices.
  •  
11.
  • Colvin, Jovana, et al. (författare)
  • Surface and dislocation investigation of planar GaN formed by crystal reformation of nanowire arrays
  • 2019
  • Ingår i: Physical Review Materials. - : American Physical Society. - 2475-9953. ; 3:9
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we present a process of forming monolithic GaN surface from an ordered nanowire array by means of material redistribution. This process, referred to as reformation, is performed in a conventional MOVPE crystal growth system with the gallium supply turned off and allows a crystal nanostructure to change shape according to differences in surface energies between its facets. Using reformation, coalescence may proceed closer to thermodynamic equilibrium, which is required for fabrication of high-quality substrate material. Scanning probe techniques are utilized, complemented by cathodoluminescence and electron microscopy, to investigate structural and electrical properties of the surface after reformation, as well as to assess densities, location, and formation of different types of defects in the GaN film. Spatial variations in material properties such as intrinsic majority-carrier types can be attributed to the radical changes in growth conditions required for sequential transition between nanowire growth, selective shell growth, and reformation. These properties enable us to assess the impact of the process on densities, locations, and formation of different types of dislocations in the GaN film. We find a fraction of the nanowires to comprise of a single electrically neutral edge dislocation, propagating from the GaN buffer, while electrically active dislocations are found at coalesced interfaces between nanowires. By decreasing the mask aperture size and changing the nucleation conditions the prevalence of nanowires comprising edge dislocation was significantly reduced from 6% to 3%, while the density of interface dislocations was reduced from 6×108 to 4×107cm-2. Using a sequential reformation process was found to create inversion domains with low surface potential N-polar regions in an otherwise Ga-polar GaN film. The inversion domains were associated with pinned dislocation pairs, and were further confirmed by selective wet etching in NaOH. This lateral polarity inversion was thoroughly eliminated in samples formed by a continuous reformation process. These results reveal a path and challenges for growing GaN substrates of superior crystal quality through nanowire reformation. 
  •  
12.
  • D'Acunto, Giulio, et al. (författare)
  • Atomic Layer Deposition of Hafnium Oxide on InAs : Insight from Time-Resolved in Situ Studies
  • 2020
  • Ingår i: ACS Applied Electronic Materials. - : American Chemical Society (ACS). - 2637-6113. ; 2:12, s. 3915-3922
  • Tidskriftsartikel (refereegranskat)abstract
    • III-V semiconductors, such as InAs, with an ultrathin high-κ oxide layer have attracted a lot of interests in recent years as potential next-generation metal-oxide-semiconductor field-effect transistors, with increased speed and reduced power consumption. The deposition of the high-κ oxides is nowadays based on atomic layer deposition (ALD), which guarantees atomic precision and control over the dimensions. However, the chemistry and the reaction mechanism involved are still partially unknown. This study reports a detailed time-resolved analysis of the ALD of high-κ hafnium oxide (HfOx) on InAs(100). We use ambient pressure X-ray photoemission spectroscopy and monitor the surface chemistry during the first ALD half-cycle, i.e., during the deposition of the metalorganic precursor. The removal of In and As native oxides, the adsorption of the Hf-containing precursor molecule, and the formation of HfOx are investigated simultaneously and quantitatively. In particular, we find that the generally used ligand exchange model has to be extended to a two-step model to properly describe the first half-cycle in ALD, which is crucial for the whole process. The observed reactions lead to a complete removal of the native oxide and the formation of a full monolayer of HfOx already during the first ALD half-cycle, with an interface consisting of In-O bonds. We demonstrate that a sufficiently long duration of the first half-cycle is essential for obtaining a high-quality InAs/HfO2 interface.
  •  
13.
  • D'acunto, Giulio, et al. (författare)
  • Bimolecular Reaction Mechanism in the Amido Complex-Based Atomic Layer Deposition of HfO2
  • 2023
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 35:2, s. 529-538
  • Tidskriftsartikel (refereegranskat)abstract
    • The surface chemistry of the initial growth during the first or first few precursor cycles in atomic layer deposition is decisive for how the growth proceeds later on and thus for the quality of the thin films grown. Yet, although general schemes of the surface chemistry of atomic layer deposition have been developed for many processes and precursors, in many cases, knowledge of this surface chemistry remains far from complete. For the particular case of HfO2 atomic layer deposition on a SiO2 surface from an alkylamido-hafnium precursor and water, we address this lack by carrying out an operando atomic layer deposition experiment during the first cycle of atomic layer deposition. Ambient-pressure X-ray photoelectron spectroscopy and density functional theory together show that the decomposition of the metal precursor on the stoichiometric SiO2 surface in the first half-cycle of atomic layer deposition proceeds via a bimolecular reaction mechanism. The reaction leads to the formation of Hf-bonded methyl methylene imine and free dimethylamine. In addition, ligand exchange takes place involving the surface hydroxyls adsorbed at defect sites of the SiO2 surface.
  •  
14.
  • D’Acunto, Giulio, et al. (författare)
  • Oxygen relocation during HfO2 ALD on InAs
  • 2022
  • Ingår i: Faraday Discussions. - : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 236, s. 71-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomic layer deposition (ALD) is one of the backbones for today’s electronic device fabrication. A critical property of ALD is the layer-by-layer growth, which gives rise to the atomic-scale accuracy. However, the growth rate - or growth per cycle - can differ significantly depending on the type of system, molecules used, and several other experimental parameters. Typically, ALD growth rates are constant in subsequent ALD cycles, making ALD an outstanding deposition technique. However, contrary to this steady-state - when the ALD process can be entirely decoupled from the substrate on which the material is grown - the deposition’s early stage does not appear to follow the same kinetics, chemistry, and growth rate. Instead, it is to a large extent determined by the surface composition of the substrate. Here, we present evidence of oxygen relocation from the substrate-based oxide, either the thermal or native oxide of InAs, to the overlayer of HfO2 in the initial ALD phase. This phenomenon enables control of the thickness of the initial ALD layer by controlling the surface conditions of the substrate prior to ALD. On the other hand, we observe a complete removal of the native oxide from InAs already during the first ALD half-cycle, even if the thickness of the oxide layer exceeds one monolayer, together with a self-limiting thickness of the ALD layer of a maximum of one monolayer of HfO2. These observations not only highlight several limitations of the widely used ligand exchange model, but they also give promise for a better control of the industrially important self-cleaning effect of III-V semiconductors, which is crucial for future generation high-speed MOS.
  •  
15.
  • D'Acunto, Giulio, et al. (författare)
  • Role of Temperature, Pressure, and Surface Oxygen Migration in the Initial Atomic Layer Deposition of HfO2on Anatase TiO2(101)
  • 2022
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 126:29, s. 12210-12221
  • Tidskriftsartikel (refereegranskat)abstract
    • The atomic layer deposition of HfO2on a TiO2(101) surface from tetrakis(dimethylamido)hafnium and water is investigated using a combination of in situ vacuum X-ray photoelectron spectroscopy (XPS) and time-resolved ambient pressure XPS. Precursor pressures and surface temperature are tuned as to map the space state of the deposition. In the initial stages of ALD, a reaction mechanism based on dissociative adsorption dominates over a classic ligand exchange mechanism, typically evoked when metal-amido complexes and water are used as the precursors for metal oxide ALD. Surface species, including a dimethyl ammonium ion and an imine, are identified. It is found that they can be formed only if the active role of the TiO2(101) surface is taken into consideration. The temperature of the surface enhances the formation of these species based on an insertion reaction of a hydrogen atom, which then assists the formation of more than the expected monolayer of HfO2. A HfO2overlayer is produced already during the first half-cycle, enabled by a reduction of the TiO2support. Dosing water at high pressure allows hydroxyl formation, which marks the transition toward a well-described ligand exchange reaction type. From the experiments performed, we find that the ALD of HfO2at room temperature, performed at high pressure, is mainly based on dissociation and that no side reaction occurs. These insights into the ALD reaction mechanism highlight how in situ studies can help understand how deposition parameters affect the growth of HfO2and how the ALD model for transition metal oxide formation from amido complexes and water can be extended.
  •  
16.
  • D'Acunto, Giulio, et al. (författare)
  • Time evolution of surface species during the ALD of high-k oxide on InAs
  • 2023
  • Ingår i: Surfaces and Interfaces. - 2468-0230. ; 39:102927
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the reaction mechanisms involved during the early stage of atomic layer deposition (ALD) of HfO2 on InAs is a key requirement for improving interfaces in III-V semiconductor-based devices. InAs is an excellent candidate to outperform silicon regarding speed and power consumption, and combined with HfO2, it gives promise for a new generation of ultra-fast MOSFETs. However, an improved interface quality and in-depth understanding of the involved surface species are needed. Here, we use in situ and operando ambient pressure XPS to follow in real-time the reaction mechanisms which control the ALD chemistry. Besides the removal of all unwanted oxide from the III-V, the same oxygen atoms are found to form HfOx already from the first half-cycle. In contrast to the standard ALD model, no hydroxyl groups are needed on the InAs surface. Furthermore, we observe an insertion reaction forming unexpected surface species. The second ALD half-cycle allows the immediate removal of all organic species leaving behind a uniform HfO2 layer partially terminated by hydroxyl groups. We find that prolonged exposure times upon both half-cycles guarantee a sharp InAs/HfO2 interface. Such an improved interface is an important step towards fast and sustainable III-V semiconductor-based electronics.
  •  
17.
  • Dzhigaev, Dmitry, et al. (författare)
  • Strain mapping inside an individual processed vertical nanowire transistor using scanning X-ray nanodiffraction
  • 2020
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 12:27, s. 14487-14493
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconductor nanowires in wrapped, gate-all-around transistor geometry are highly favorable for future electronics. The advanced nanodevice processing results in strain due to the deposited dielectric and metal layers surrounding the nanowires, significantly affecting their performance. Therefore, non-destructive nanoscale characterization of complete devices is of utmost importance due to the small feature sizes and three-dimensional buried structure. Direct strain mapping inside heterostructured GaSb-InAs nanowire tunnel field-effect transistor embedded in dielectric HfO2, W metal gate layers, and an organic spacer is performed using fast scanning X-ray nanodiffraction. The effect of 10 nm W gate on a single embedded nanowire with segment diameters down to 40 nm is retrieved. The tensile strain values reach 0.26% in the p-type GaSb segment of the transistor. Supported by the finite element method simulation, we establish a connection between the Ar pressure used during the W layer deposition and the nanowire strain state. Thus, we can benchmark our models for further improvements in device engineering. Our study indicates, how the significant increase in X-ray brightness at 4th generation synchrotron, makes high-throughput measurements on realistic nanoelectronic devices viable.
  •  
18.
  • Ertürk Bergdahl, Gizem, et al. (författare)
  • In Vivo Detection and Absolute Quantification of a Secreted Bacterial Factor from Skin Using Molecularly Imprinted Polymers in a Surface Plasmon Resonance Biosensor for Improved Diagnostic Abilities
  • 2019
  • Ingår i: ACS Sensors. - : American Chemical Society (ACS). - 2379-3694. ; 4:3, s. 717-725
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, a surface plasmon resonance (SPR) biosensor was developed for the detection and quantification of a secreted bacterial factor (RoxP) from skin. A molecular imprinting method was used for the preparation of sensor chips and five different monomer-cross-linker compositions were evaluated for sensitivity, selectivity, affinity, and kinetic measurements. The most promising molecularly imprinted polymer (MIP) was characterized by using scanning electron microscopy, atomic force microscopy, and cyclic voltammetry. Limit of detection (LOD) value was calculated as 0.23 nM with an affinity constant of 3.3 × 10-9 M for the promising MIP. Besides being highly sensitive, the developed system was also very selective for the template protein RoxP, proven by the calculated selectivity coefficients. Finally, absolute concentrations of RoxP in several skin swabs were analyzed by using the developed MIP-SPR biosensor and compared to a competitive ELISA. Consequently, the developed system offers a very efficient tool for the detection and quantification of RoxP as an early indicator for some oxidative skin diseases especially when they are present in low-abundance levels (e.g., skin samples).
  •  
19.
  • Fian, Alexander, et al. (författare)
  • New Flexible Toolbox for Nanomechanical Measurements with Extreme Precision and at Very High Frequencies.
  • 2010
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 10:Online August 26, 2010, s. 3893-3898
  • Tidskriftsartikel (refereegranskat)abstract
    • We show that the principally two-dimensional (2D) scanning tunneling microscope (STM) can be used for imaging of 1D micrometer high free-standing nanowires. We can then determine nanowire megahertz resonance frequencies, image their top-view 2D resonance shapes, and investigate axial stress on the nanoscale. Importantly, we demonstrate the extreme sensitivity of electron tunneling even at very high frequencies by measuring resonances at hundreds of megahertz with a precision far below the angstrom scale.
  •  
20.
  •  
21.
  • Hjort, Martin, et al. (författare)
  • Crystal Structure Induced Preferential Surface Alloying of Sb on Wurtzite/Zinc Blende GaAs Nanowires
  • 2017
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 17:6, s. 3634-3640
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the surface diffusion and alloying of Sb into GaAs nanowires (NWs) with controlled axial stacking of wurtzite (Wz) and zinc blende (Zb) crystal phases. Using atomically resolved scanning tunneling microscopy, we find that Sb preferentially incorporates into the surface layer of the {110}-terminated Zb segments rather than the {1120}-terminated Wz segments. Density functional theory calculations verify the higher surface incorporation rate into the Zb phase and find that it is related to differences in the energy barrier of the Sb-for-As exchange reaction on the two surfaces. These findings demonstrate a simple processing-free route to compositional engineering at the monolayer level along NWs.
  •  
22.
  • Hjort, Martin, et al. (författare)
  • Direct Imaging of Atomic Scale Structure and Electronic Properties of GaAs Wurtzite and Zinc Blende Nanowire Surfaces.
  • 2013
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 13:9, s. 4492-4498
  • Tidskriftsartikel (refereegranskat)abstract
    • Using scanning tunneling microscopy and spectroscopy we study the atomic scale geometry and electronic structure of GaAs nanowires exhibiting controlled axial stacking of wurtzite (Wz) and zinc blende (Zb) crystal segments. We find that the nonpolar low-index surfaces {110}, {101̅0}, and {112̅0} are unreconstructed, unpinned, and without states in the band gap region. Direct comparison between Wz and Zb GaAs reveal a type-II band alignment and a Wz GaAs band gap of 1.52 eV.
  •  
23.
  • Hjort, Martin, et al. (författare)
  • Doping profile of InP nanowires directly imaged by photoemission electron microscopy
  • 2011
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 99:23
  • Tidskriftsartikel (refereegranskat)abstract
    • InP nanowires (NWs) with differently doped segments were studied with nanoscale resolution using synchrotron based photoemission electron microscopy. We clearly resolved axially stacked n-type and undoped segments of the NWs without the need of additional processing or contacting. The lengths and relative doping levels of different NW segments as well as space charge regions were determined indicating memory effects of sulfur during growth. The surface chemistry of the nanowires was monitored simultaneously, showing that in the present case, the doping contrast was independent of the presence or absence of a native oxide. (C) 2011 American Institute of Physics. [doi:10.1063/1.3662933]
  •  
24.
  • Hjort, Martin, et al. (författare)
  • Electronic and Structural Differences between Wurtzite and Zinc Blende InAs Nanowire Surfaces: Experiment and Theory
  • 2014
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 8:12, s. 12346-12355
  • Tidskriftsartikel (refereegranskat)abstract
    • We determine the detailed differences in geometry and band structure between wurtzite (Wz) and zinc blende (Zb) InAs nanowire (NW) surfaces using scanning tunneling microscopy/spectroscopy and photoemission electron microscopy. By establishing unreconstructed and defect-free surface facets for both Wz and Zb, we can reliably measure differences between valence and conduction band edges, the local vacuum levels, and geometric relaxations to the few-millielectronvolt and few-picometer levels, respectively. Surface and bulk density functional theory calculations agree well with the experimental findings and are used to interpret the results, allowing us to obtain information on both surface and bulk electronic structure. We can thus exclude several previously proposed explanations for the observed differences in conductivity of Wz-Zb NW devices. Instead, fundamental structural differences at the atomic scale and nanoscale that we observed between NW surface facets can explain the device behavior.
  •  
25.
  • Hjort, Martin, et al. (författare)
  • Surface Chemistry, Structure, and Electronic Properties from Microns to the Atomic Scale of Axially Doped Semiconductor Nanowires.
  • 2012
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851.
  • Tidskriftsartikel (refereegranskat)abstract
    • Using both synchrotron-based photoemission electron microscopy/spectroscopy and scanning tunneling microscopy/spectroscopy, we obtain a complete picture of the surface composition, morphology, and electronic structure of InP nanowires. Characterization is done at all relevant length scales from micrometer to nanometer. We investigate nanowire surfaces with native oxide and molecular adsorbates resulting from exposure to ambient air. Atomic hydrogen exposure at elevated temperatures which leads to the removal of surface oxides while leaving the crystalline part of the wire intact was also studied. We show how surface chemical composition will seriously influence nanowire electronic properties. However, opposite to, for example, Ge nanowires, water or sulfur molecules adsorbed on the exterior oxidized surfaces are of less relevance. Instead, it is the final few atomic layers of the oxide which plays the most significant role by strongly negatively doping the surface. The InP nanowires in air are rather insensitive to their chemical surroundings in contrast to what is often assumed for nanowires. Our measurements allow us to draw a complete energy diagram depicting both band gap and differences in electron affinity across an axial nanowire p-n junction. Our findings thus give a robust set of quantitative values relating surface chemical composition to specific electronic properties highly relevant for simulating the performance of nanoscale devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 73
Typ av publikation
tidskriftsartikel (63)
konferensbidrag (9)
bokkapitel (1)
Typ av innehåll
refereegranskat (71)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Timm, Rainer (71)
Mikkelsen, Anders (49)
Hjort, Martin (21)
Samuelson, Lars (19)
Wernersson, Lars-Eri ... (14)
Lundgren, Edvin (13)
visa fler...
Lind, Erik (11)
Lenrick, Filip (10)
Lehmann, Sebastian (9)
Gustafsson, Anders (9)
Colvin, Jovana (9)
Yngman, Sofie (9)
Wallentin, Jesper (8)
Dick Thelander, Kimb ... (8)
Troian, Andrea (8)
Andersen, Jesper N (7)
Schnadt, Joachim (7)
Irish, Austin (7)
Liu, Yi (7)
Liu, Yen-Po (7)
D'acunto, Giulio (7)
Persson, Olof (7)
Wallenberg, Reine (6)
Zakharov, Alexei (6)
Knutsson, Johan (6)
Bi, Zhaoxia (6)
Khalilian, Maryam (6)
Thelander, Claes (5)
Hultin, Olof (5)
Ohlsson, Jonas (5)
McKibbin, Sarah R. (5)
Borgström, Magnus (4)
Dick, Kimberly A. (4)
Borg, Mattias (4)
Benter, Sandra (4)
Kokkonen, Esko (4)
Rehman, Foqia (4)
Shayesteh, Payam (4)
Fian, Alexander (4)
Johansson, Jonas (3)
Hessman, Dan (3)
Borgström, Magnus T. (3)
Svensson, Johannes (3)
Monemar, Bo (3)
Jönsson, Adam (3)
Ohlsson, B. Jonas (3)
Hammarberg, Susanna (3)
Yong, Zhihua (3)
Palmstrøm, Chris J. (3)
Kawasaki, Jason K. (3)
visa färre...
Lärosäte
Lunds universitet (71)
Chalmers tekniska högskola (4)
RISE (4)
Uppsala universitet (3)
Högskolan i Halmstad (1)
Örebro universitet (1)
Språk
Engelska (72)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (61)
Teknik (37)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy