SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Timofte Radu) "

Sökning: WFRF:(Timofte Radu)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anoosheh, Asha, et al. (författare)
  • Night-to-day image translation for retrieval-based localization
  • 2019
  • Ingår i: Proceedings - IEEE International Conference on Robotics and Automation. - 1050-4729. ; 2019-May, s. 5958-5964
  • Konferensbidrag (refereegranskat)abstract
    • Visual localization is a key step in many robotics pipelines, allowing the robot to (approximately) determine its position and orientation in the world. An efficient and scalable approach to visual localization is to use image retrieval techniques. These approaches identify the image most similar to a query photo in a database of geo-tagged images and approximate the query's pose via the pose of the retrieved database image. However, image retrieval across drastically different illumination conditions, e.g. day and night, is still a problem with unsatisfactory results, even in this age of powerful neural models. This is due to a lack of a suitably diverse dataset with true correspondences to perform end-to-end learning. A recent class of neural models allows for realistic translation of images among visual domains with relatively little training data and, most importantly, without ground-truth pairings.In this paper, we explore the task of accurately localizing images captured from two traversals of the same area in both day and night. We propose ToDayGAN - a modified image-translation model to alter nighttime driving images to a more useful daytime representation. We then compare the daytime and translated night images to obtain a pose estimate for the night image using the known 6-DOF position of the closest day image. Our approach improves localization performance by over 250% compared the current state-of-the-art, in the context of standard metrics in multiple categories.
  •  
2.
  • Bhat, Goutam, et al. (författare)
  • NTIRE 2022 Burst Super-Resolution Challenge
  • 2022
  • Ingår i: 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2022). - : IEEE. - 9781665487399 - 9781665487405 ; , s. 1040-1060
  • Konferensbidrag (refereegranskat)abstract
    • Burst super-resolution has received increased attention in recent years due to its applications in mobile photography. By merging information from multiple shifted images of a scene, burst super-resolution aims to recover details which otherwise cannot be obtained using a simple input image. This paper reviews the NTIRE 2022 challenge on burst super-resolution. In the challenge, the participants were tasked with generating a clean RGB image with 4x higher resolution, given a RAW noisy burst as input. That is, the methods need to perform joint denoising, demosaicking, and super-resolution. The challenge consisted of 2 tracks. Track 1 employed synthetic data, where pixel-accurate high-resolution ground truths are available. Track 2 on the other hand used real-world bursts captured from a handheld camera, along with approximately aligned reference images captured using a DSLR. 14 teams participated in the final testing phase. The top performing methods establish a new state-of-the-art on the burst super-resolution task.
  •  
3.
  • Goutam, Bhat, et al. (författare)
  • Learning What to Learn for Video Object Segmentation
  • 2020
  • Ingår i: Computer Vision. - Cham : Springer International Publishing. - 9783030585358 - 9783030585365 ; , s. 777-794
  • Konferensbidrag (refereegranskat)abstract
    • Video object segmentation (VOS) is a highly challengingproblem, since the target object is only defined by a first-frame refer-ence mask during inference. The problem of how to capture and utilizethis limited information to accurately segment the target remains a fun-damental research question. We address this by introducing an end-to-end trainable VOS architecture that integrates a differentiable few-shotlearner. Our learner is designed to predict a powerful parametric modelof the target by minimizing a segmentation error in the first frame. Wefurther go beyond the standard few-shot learning paradigm by learningwhat our target model should learn in order to maximize segmentationaccuracy. We perform extensive experiments on standard benchmarks.Our approach sets a new state-of-the-art on the large-scale YouTube-VOS 2018 dataset by achieving an overall score of 81.5, corresponding toa 2.6% relative improvement over the previous best result. The code andmodels are available at https://github.com/visionml/pytracking.
  •  
4.
  •  
5.
  • Kristan, Matej, et al. (författare)
  • The Ninth Visual Object Tracking VOT2021 Challenge Results
  • 2021
  • Ingår i: 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021). - : IEEE COMPUTER SOC. - 9781665401913 ; , s. 2711-2738
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2021 is the ninth annual tracker benchmarking activity organized by the VOT initiative. Results of 71 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in recent years. The VOT2021 challenge was composed of four sub-challenges focusing on different tracking domains: (i) VOT-ST2021 challenge focused on short-term tracking in RGB, (ii) VOT-RT2021 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2021 focused on long-term tracking, namely coping with target disappearance and reappearance and (iv) VOT-RGBD2021 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2021 dataset was refreshed, while VOT-RGBD2021 introduces a training dataset and sequestered dataset for winner identification. The source code for most of the trackers, the datasets, the evaluation kit and the results along with the source code for most trackers are publicly available at the challenge website(1).
  •  
6.
  • Kristanl, Matej, et al. (författare)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • Ingår i: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy