SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tjernberg Oscar 1967 ) "

Sökning: WFRF:(Tjernberg Oscar 1967 )

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersen, J., et al. (författare)
  • The soft X-ray laser project at MAX IV
  • 2017
  • Ingår i: IPAC 2017 - Proceedings of the 8th International Particle Accelerator Conference. - : Joint Accelerator Conferences Website - JACoW. - 9783954501823 ; , s. 2760-2762
  • Konferensbidrag (refereegranskat)abstract
    • A Soft X-ray Laser (SXL) beamline utilising FEL technology is being designed for the Short Pulse Facility (SPF) at the MAX IV Laboratory. A conceptual design study has been started following on the scientific case already prepared in collaboration between several Swedish Universities and driven by a strong (Swedish) user demand. The baseline goal of the SXL beamline is to generate intense and short pulses in the range 1-5 nm (0.2-1 keV). The system is building on the MAX IV linac system, already today providing 100 fs 3 GeV and pulses compressed to 100 fs for other applications within the SPF. As a special feature we foresee a variety of pump-probe capabilities. 
  •  
2.
  • Duan, Yu Xia, et al. (författare)
  • Crystal electric field splitting and f -electron hybridization in heavy-fermion CePt2In7
  • 2019
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9969 .- 2469-9950. ; 100:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We use high-resolution angle-resolved photoemission spectroscopy to investigate the electronic structure of the antiferromagnetic heavy fermion compound CePt2In7, which is a member of the CeIn3-derived heavy fermion material family. Weak hybridization among 4f electron states and conduction bands was identified in CePt2In7 at low temperature much weaker than that in the other heavy fermion compounds like CeIrIn5 and CeRhIn5. The Ce 4f spectrum shows fine structures near the Fermi energy, reflecting the crystal electric field splitting of the 4f5/21 and 4f7/21 states. Also, we find that the Fermi surface has a strongly three-dimensional topology, in agreement with density-functional theory calculations.  © 2019 American Physical Society.
  •  
3.
  • Guo, Qinda, et al. (författare)
  • A narrow bandwidth extreme ultra-violet light source for time- and angle-resolved photoemission spectroscopy
  • 2022
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we present a high repetition rate, narrow bandwidth, extreme ultraviolet photon source for time- and angle-resolved photoemission spectroscopy. The narrow bandwidth pulses Δ E = 9, 14, and 18 meV for photon energies h ν = 10.8, 18.1, and 25.3 eV are generated through high harmonic generation using ultra-violet drive pulses with relatively long pulse lengths (461 fs). The high harmonic generation setup employs an annular drive beam in tight focusing geometry at a repetition rate of 250 kHz. Photon energy selection is provided by a series of selectable multilayer bandpass mirrors and thin film filters, thus avoiding any time broadening introduced by single grating monochromators. A two stage optical-parametric amplifier provides < 100 fs tunable pump pulses from 0.65 μm to 9 μm. The narrow bandwidth performance of the light source is demonstrated through angle-resolved photoemission measurements on a series of quantum materials, including high-temperature superconductor Bi-2212, WSe2, and graphene. 
  •  
4.
  • Guo, Qinda (författare)
  • Angle-resolved photoemission study of unconventional cuprate superconductors
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding unconventional superconductivity remains one of the most important unsolved problems in physics. A particularly noteworthy case is the copper-based high-temperature superconductor, which stands out due to its remarkably high transition temperature and relatively simple structure. These exceptional properties not only make the study of cuprates valuable for potential practical applications but also provide a prominent platform for deepened understanding of many-particle physics. In the realm of quantum materials, angle-resolved photoemission spectroscopy (ARPES) has emerged as an indispensable tool for examining the intricate electronic structure in momentum space. This methodology directly probes the single-particle spectral function and can uncover the underlying microscopic interactions. In recent years, technological advancements have enabled the development and implementation of time-resolved ARPES (tr-ARPES). tr-ARPES allows access to non-equilibrium transient states and provides valuable insights into the correlated dynamic properties. This thesis work is divided into two main parts. The first part focuses on the development of a high-resolution, high harmonic generation (HHG)-based tr-ARPES setup. The second part involves ARPES investigations of hole- and electron-doped cuprate superconductors.The aim of developing the tr-ARPES setup was to have a light source with specific characteristics, including a narrow bandwidth, a wide range of photon energies (covering the entire first Brillouin zone), good temporal resolution (near the transform limit), and a high repetition rate (to mitigate the space charge effect). To meet these requirements, the chosen technical approach is the HHG method, driven by an unusually long laser pulse (~460 fs) and short wavelength (343 nm) from a frequency tripled Yb fiber laser. The selection of photon energy is achieved through switchable multilayer bandpass mirrors and thin film filters to prevent temporal broadening. As a result, we achieve an energy resolution of ΔE = 9, 14, 18, 111 meV for photon energies of hν = 10.8, 18.1, 25.3, 32.5 eV. For the pump pulse, a tunable range from 0.65 μm to 9 μm is provided by a two-stage optical-parametric amplifier. Further developments on the instrumental side is the exploration of using a spherical grating to select the HHG harmonics. This is realized by designing a very low-density grating so that the temporal broadening can be minimized. The spherical grating has been numerically calculated, fabricated, and experimentally characterized. This monochromator solution was compared with the mirror+filter configuration and has shown much higher efficiency (3.3 times higher for 10.8 eV and 12.9 times higher for 18.1 eV) with insignificant temporal broadening (6.8% increase for 18.1 eV). This experimental development provides a compact and efficient layout for ultrafast pulse extraction.In the cuprate section, a thorough investigation was conducted on the optimally doped n-type cuprate (NdCeCuO) using static ARPES. The much-refined experimental conditions have enabled us to obtain unprecedented signal-to-noise ratio and detailed observations in this material. The results demonstrate two distinct sectors of states: the reconstructed main band, which exhibited a gap due to the antiferromagnetic (AF) interactions, and a remaining dispersion observed within this AF pseudogap. This in-gap dispersion forms a 'gossamer' Fermi surface that plays a crucial role in the electron pairing. Additionally, a replica band corresponding to the AF folding feature was observed, displaying a consistent energy difference (approximately 60 meV) in both momentum and temperature dependence, possibly suggesting a connection between the AF order and phonon coupling. Furthermore, the hole-doped cuprate (Bi-2212) was studied using the recently developed tr-ARPES system. Leveraging the use of time-of-flight detection, node-antinode information could be gathered from a single measurement. The dynamics of the in-gap states at the antinode exhibited disparities with the near-node region, potentially reflecting phenomena associated with the pseudogap.
  •  
5.
  • Horio, M., et al. (författare)
  • Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates
  • 2018
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 121:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a soft x-ray angle-resolved photoemission spectroscopy study of overdoped high-temperature superconductors. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No k(z) dispersion is observed along the nodal direction, whereas a significant antinodal k(z) dispersion is identified for La-based cuprates. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La2-xSrxCuO4 cannot be assigned to the van Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat.
  •  
6.
  • Jonsson, Viktor, et al. (författare)
  • Photoelectron dispersion in metallic and insulating thin films
  • 2021
  • Ingår i: Physical Review Research. - : American Physical Society. - 2643-1564. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The underlying mechanism behind the metal-to-insulator transition in is still a topic of intense debate. The two leading theoretical interpretations associate the transition with either electron-lattice or electron-electron correlations. Novel experimental results are required to converge towards one of the two scenarios. Here we report on a temperature-dependent angle-resolved photoelectron study of thin films across the metal-to-insulator transition. The obtained experimental results are compared to density functional theory calculations. We find an overall energy shift and compression of the electronic band structure across the transition while the overall band topology is conserved. The results demonstrate the importance of electron-electron correlations in establishing the insulating state.
  •  
7.
  • Li, Cong, et al. (författare)
  • Coexistence of two intertwined charge density waves in a kagome system
  • 2022
  • Ingår i: Physical Review Research. - : American Physical Society (APS). - 2643-1564. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Materials with a kagome lattice structure display a wealth of intriguing magnetic properties due to their geometric frustration and intrinsically flat band structure. Recently, topological and superconducting states have also been observed in kagome systems. The kagome lattice may also host a "breathing" mode that leads to charge density wave (CDW) states, if there is strong electron-phonon coupling, electron-electron interaction, or external excitation of the material. This "breathing" mode can give rise to candidate distortions such as the star of David (SoD) or its inverse structure [trihexagonal (TrH)]. To date, in most materials, only a single type of distortion has been observed. Here, we present angle-resolved photoemission spectroscopy measurements on the kagome superconductor CsV3Sb5 at multiple temperatures and photon energies to reveal the nature of the CDW in this material. It is shown that CsV3Sb5 displays two intertwined CDW orders corresponding to the SoD and TrH distortions. These two distinct types of distortions are stacked along the c direction to form a three-dimensional CDW order where the two 2-fold CDWs are phase shifted along the c axis. The presented results provide not only key insights into the nature of the unconventional CDW order in CsV3Sb5, but also an important reference for further studies on the relationship between the CDW and superconducting order.
  •  
8.
  • Li, Cong, et al. (författare)
  • Emergence of Weyl fermions by ferrimagnetism in a noncentrosymmetric magnetic Weyl semimetal
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Condensed matter physics has often provided a platform for investigating the interplay between particles and fields in cases that have not been observed in high-energy physics. Here, using angle-resolved photoemission spectroscopy, we provide an example of this by visualizing the electronic structure of a noncentrosymmetric magnetic Weyl semimetal candidate NdAlSi in both the paramagnetic and ferrimagnetic states. We observe surface Fermi arcs and bulk Weyl fermion dispersion as well as the emergence of new Weyl fermions in the ferrimagnetic state. Our results establish NdAlSi as a magnetic Weyl semimetal and provide an experimental observation of ferrimagnetic regulation of Weyl fermions in condensed matter.
  •  
9.
  • Nordstrand, Johan (författare)
  • At the Mountains of Modeling : Multiscale Simulations of Desalination by Capacitive Deionization
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • More than 2 billion people are living in water-scarce areas. Meanwhile, there are enormous amounts of water in the salty oceans. Capacitive deionization (CDI) rises to the challenge with electrochemical cells for desalinating the water. As the CDI field expands, modeling becomes an increasingly important part of the development landscape. Multiscale modeling could bring innovations from the material scale to pilot plants. The multiscale work in this thesis has been like climbing a mountain. At the start, we investigate the macroscopic device level. One milestone is the electrolytic-capacitor (ELC) model, which can simulate CDI process dynamics. Whereas previous 2D models were unsteady for a single CDIcell, the ELC model could accurately simulate stacks of over 100 cells at a fraction of the time. It also enables simulations of complex upscaled geometries, such as bipolar electrode stacks, ohmic charging, and asymmetric devices. Going up the mountain, the mesoscopic level reveals the local mechanisms behind the macroscopic behavior. One important stepping stone is the dynamic Langmuir (DL) model, which reveals how isotherm-based modeling can crease stable and tractable simulations. Also, developments in isotherm, double-layer, and circuit modeling make it possible to choose what model structures to lean on depending on the conditions. Near the top of the mountain, the microscopic level shows the fundamental atomic mechanisms behind the mesoscopic material properties. These investigations reveal a ladder mechanism of ion transport in crystals of Prussian blue analogs (PBA), meaning the cations climb frames formed by negative groups in the crystal structure.In the end, we plant a flag by combining the developments from the journey into a complete multiscale model. That model demonstrated that we could predict CDI charging trends from the atomic structure of PBA electrodes. Having the full multiscale model also made it possible to backtrack and determine atomic-level mechanisms by comparing the output of different mechanism cases with macroscopic experiment data. The multiscale mountain is massive and has big potential. A dream is that future research will expand these concepts, in CDI and beyond.
  •  
10.
  • Polley, Craig M., et al. (författare)
  • Fragility of the Dirac Cone Splitting in Topological Crystalline Insulator Heterostructures
  • 2018
  • Ingår i: ACS Nano. - : AMER CHEMICAL SOC. - 1936-0851 .- 1936-086X. ; 12:1, s. 617-626
  • Tidskriftsartikel (refereegranskat)abstract
    • The "double Dirac cone" 2D topological interface states found on the (001) faces of topological crystalline insulators such as Pb1-xSnxSe feature degeneracies located away from time reversal invariant momenta and are a manifestation of both mirror symmetry protection and valley interactions. Similar shifted degeneracies in 1D interface states have been highlighted as a potential basis for a topological transistor, but realizing such a device will require a detailed understanding of the intervalley physics involved. In addition, the operation of this or similar devices outside of ultrahigh vacuum will require encapsulation, and the consequences of this for the topological interface state must be understood. Here we address both topics for the case of 2D surface states using angle-resolved photoemission spectroscopy. We examine bulk Pb1-xSnxSe(001) crystals overgrown with PbSe, realizing trivial/topological heterostructures. We demonstrate that the valley interaction that splits the two Dirac cones at each (X) over bar is extremely sensitive to atomic-scale details of the surface, exhibiting non-monotonic changes as PbSe deposition proceeds. This includes an apparent total collapse of the splitting for sub-monolayer coverage, eliminating the Lifshitz transition. For a large overlayer thickness we observe quantized PbSe states, possibly reflecting a symmetry confinement mechanism at the buried topological interface.
  •  
11.
  • Razzoli, E., et al. (författare)
  • Rotation symmetry breaking in La2-xSrxCuO4 revealed by angle-resolved photoemission spectroscopy
  • 2017
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 95:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Using angle-resolved photoemission spectroscopy it is revealed that in the vicinity of optimal doping the electronic structure of La2-x SrxCuO4 cuprate undergoes an electronic reconstruction associated with a wave vector q(a) = (pi, 0). The reconstructed Fermi surface and folded band are distinct to the shadow bands observed in BSCCO cuprates and in underdoped La2-xSrxCuO4 with x <= 0.12, which shift the primary band along the zone diagonal direction. Furthermore, the folded bands appear only with q(a) = (pi, 0) vector, but not with q(b) = (0, pi). We demonstrate that the absence of q(b) reconstruction is not due to thematrix-element effects in the photoemission process, which indicates the fourfold symmetry is broken in the system.
  •  
12.
  • Sassa, Yasmine, et al. (författare)
  • The metallic quasi-1D spin-density-wave compound NaV2O4 studied by angle-resolved photoelectron spectroscopy
  • 2018
  • Ingår i: Journal of Electron Spectroscopy and Related Phenomena. - : ELSEVIER SCIENCE BV. - 0368-2048 .- 1873-2526. ; 224, s. 79-83
  • Tidskriftsartikel (refereegranskat)abstract
    • Angle-resolved photoelectron spectroscopy has been used to follow the valence band and near Fermi edge electronic band structure in the quasi-1D compound NaV2O4. In this current study we have acquired the very first high-quality, high-resolution ARPES data from this material. Our data clearly reveal two distinct dispersive bands that cross the Fermi level at different k(F). This is a clear signature that the electronic properties of this material is affected by the presence of a mixed valence state on the different vanadium chains and possibly also the low-temperature magnetic spin order.
  •  
13.
  • Song, Jiao-Jiao, et al. (författare)
  • The 4f-Hybridization Strength in CemMnIn3m+2n Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy
  • 2021
  • Ingår i: Chinese Physics Letters. - : IOP Publishing. - 0256-307X .- 1741-3540. ; 38:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds CemMnIn3m+2n (with M = Co, Rh, Jr, and Pt, m = 1, 2, n = 0-2), at low temperature using on-resonance angle-resolved photoemission spectroscopy. Three heavy quasiparticle bands f(0), f(7/2)(1) and f(5/2)(1), are observed in all compounds, whereas their intensities and energy locations vary greatly with materials. The strong f(0) states imply that the localized electron behavior dominates the Ce 4f states. The Ce 4f electrons are partially hybridized with the conduction electrons, making them have the dual nature of localization and itinerancy. Our quantitative comparison reveals that the f(5/2)(1)-f (0) intensity ratio is more suitable to reflect the 4f-state hybridization strength.
  •  
14.
  •  
15.
  • Xu, Ke Jun, et al. (författare)
  • Bogoliubov quasiparticle on the gossamer Fermi surface in electron-doped cuprates
  • 2023
  • Ingår i: Nature Physics. - : Springer Nature. - 1745-2473 .- 1745-2481. ; 19:12, s. 1834-1840
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron-doped cuprates consistently exhibit strong antiferromagnetic correlations, leading to the prevalent belief that antiferromagnetic spin fluctuations mediate Cooper pairing in these unconventional superconductors. However, early investigations showed that although antiferromagnetic spin fluctuations create the largest pseudogap at hot spots in momentum space, the superconducting gap is also maximized at these locations. This presented a paradox for spin-fluctuation-mediated pairing: Cooper pairing is strongest at momenta where the normal-state low-energy spectral weight is most suppressed. Here we investigate this paradox and find evidence that a gossamer—meaning very faint—Fermi surface can provide an explanation for these observations. We study Nd2–xCexCuO4 using angle-resolved photoemission spectroscopy and directly observe the Bogoliubov quasiparticles. First, we resolve the previously observed reconstructed main band and the states gapped by the antiferromagnetic pseudogap around the hot spots. Within the antiferromagnetic pseudogap, we also observe gossamer states with distinct dispersion, from which coherence peaks of Bogoliubov quasiparticles emerge below the superconducting critical temperature. Moreover, the direct observation of a Bogoliubov quasiparticle permits an accurate determination of the superconducting gap, yielding a maximum value an order of magnitude smaller than the pseudogap, establishing the distinct nature of these two gaps. We propose that orientation fluctuations in the antiferromagnetic order parameter are responsible for the gossamer states.
  •  
16.
  • Yuan, Ya Hua, et al. (författare)
  • Angle-resolved photoemission spectroscopy view on the nature of Ce 4f electrons in the antiferromagnetic Kondo lattice CePd5Al2
  • 2021
  • Ingår i: Physical Review B. - : American Physical Society (APS). - 2469-9969 .- 2469-9950. ; 103:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We report an angle-resolved photoemission spectroscopy study of the antiferromagnetic Kondo lattice CePd5Al2, focusing on the quasi-two-dimensional k-space nature of its Fermi surface and, tuning photon energy to the Ce 4d-4f on-resonance transition, the hybridization of the Ce 4f state. A strong shoulder feature on the f0 peak was detected, suggesting hybridization between conduction and f bands. On-resonance spectra revealed narrow, yet hybridized quasiparticle bands with sharp peaks and ∼ 9 meV energy dispersion near the Fermi energy EF. The observed dispersive hybridized f band can be well described by a hybridization-band picture based on the periodic Anderson model (PAM). Hence, the 4f electrons in CePd5Al2 display a dual nature, with both localized and itinerant features, but with dominantly localized character.
  •  
17.
  • Zhang, Chen, et al. (författare)
  • Antiferromagnetic order in Kondo lattice CePd5Al2 possibly driven by nesting
  • 2023
  • Ingår i: Physical Review B. - : American Physical Society (APS). - 2469-9950 .- 2469-9969. ; 108:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the electronic structure of the antiferromagnetic Kondo lattice CePd5Al2 using high-resolution angle-resolved photoemission spectroscopy. The experimentally determined band structure of the conduction electrons is predominated by the Pd 4d character. It contains multiple hole and electron Fermi pockets, in good agreement with density functional theory calculations. The Fermi surface is folded over Q0=(0,0,1), manifested by Fermi surface reconstruction and band folding. Our results suggest that Fermi surface nesting drives the formation of antiferromagnetic order in CePd5Al2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy