SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Toga A. W.) "

Sökning: WFRF:(Toga A. W.)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Vogel, Jacob W., et al. (författare)
  • Four distinct trajectories of tau deposition identified in Alzheimer’s disease
  • 2021
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:5, s. 871-881
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These ‘subtypes’ were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of ‘typical AD’ and a revisiting of tau pathological staging. © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
3.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
4.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
5.
  •  
6.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
7.
  •  
8.
  • Zhou, XP, et al. (författare)
  • Non-coding variability at the APOE locus contributes to the Alzheimer's risk
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 3310-
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is a leading cause of mortality in the elderly. While the coding change of APOE-ε4 is a key risk factor for late-onset AD and has been believed to be the only risk factor in the APOE locus, it does not fully explain the risk effect conferred by the locus. Here, we report the identification of AD causal variants in PVRL2 and APOC1 regions in proximity to APOE and define common risk haplotypes independent of APOE-ε4 coding change. These risk haplotypes are associated with changes of AD-related endophenotypes including cognitive performance, and altered expression of APOE and its nearby genes in the human brain and blood. High-throughput genome-wide chromosome conformation capture analysis further supports the roles of these risk haplotypes in modulating chromatin states and gene expression in the brain. Our findings provide compelling evidence for additional risk factors in the APOE locus that contribute to AD pathogenesis.
  •  
9.
  •  
10.
  • Li, M, et al. (författare)
  • Allelic differences between Europeans and Chinese for CREB1 SNPs and their implications in gene expression regulation, hippocampal structure and function, and bipolar disorder susceptibility.
  • 2014
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 19:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a polygenic disorder that shares substantial genetic risk factors with major depressive disorder (MDD). Genetic analyses have reported numerous BD susceptibility genes, while some variants, such as single-nucleotide polymorphisms (SNPs) in CACNA1C have been successfully replicated, many others have not and subsequently their effects on the intermediate phenotypes cannot be verified. Here, we studied the MDD-related gene CREB1 in a set of independent BD sample groups of European ancestry (a total of 64888 subjects) and identified multiple SNPs significantly associated with BD (the most significant being SNP rs6785[A], P=6.32 × 10−5, odds ratio (OR)=1.090). Risk SNPs were then subjected to further analyses in healthy Europeans for intermediate phenotypes of BD, including hippocampal volume, hippocampal function and cognitive performance. Our results showed that the risk SNPs were significantly associated with hippocampal volume and hippocampal function, with the risk alleles showing a decreased hippocampal volume and diminished activation of the left hippocampus, adding further evidence for their involvement in BD susceptibility. We also found the risk SNPs were strongly associated with CREB1 expression in lymphoblastoid cells (P<0.005) and the prefrontal cortex (P<1.0 × 10−6). Remarkably, population genetic analysis indicated that CREB1 displayed striking differences in allele frequencies between continental populations, and the risk alleles were completely absent in East Asian populations. We demonstrated that the regional prevalence of the CREB1 risk alleles in Europeans is likely caused by genetic hitchhiking due to natural selection acting on a nearby gene. Our results suggest that differential population histories due to natural selection on regional populations may lead to genetic heterogeneity of susceptibility to complex diseases, such as BD, and explain inconsistencies in detecting the genetic markers of these diseases among different ethnic populations.
  •  
11.
  • Sweeney, M. D., et al. (författare)
  • Vascular dysfunction-The disregarded partner of Alzheimer's disease
  • 2019
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 15:1, s. 158-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing evidence recognizes Alzheimer's disease (AD) as a multifactorial and heterogeneous disease with multiple contributors to its pathophysiology, including vascular dysfunction. The recently updated AD Research Framework put forth by the National Institute on Aging-Alzheimer's Association describes a biomarker-based pathologic definition of AD focused on amyloid, tau, and neuronal injury. In response to this article, here we first discussed evidence that vascular dysfunction is an important early event in AD pathophysiology. Next, we examined various imaging sequences that could be easily implemented to evaluate different types of vascular dysfunction associated with, and/or contributing to, AD pathophysiology, including changes in blood-brain barrier integrity and cerebral blood flow. Vascular imaging biomarkers of small vessel disease of the brain, which is responsible for >50% of dementia worldwide, including AD, are already established, well characterized, and easy to recognize. We suggest that these vascular biomarkers should be incorporated into the AD Research Framework to gain a better understanding of AD pathophysiology and aid in treatment efforts. (C) 2018 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
12.
  • Mollenhauer, B., et al. (författare)
  • Validation of Serum Neurofilament Light Chain as a Biomarker of Parkinson's Disease Progression
  • 2020
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185 .- 1531-8257. ; 35:11, s. 1999-2008
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The objective of this study was to assess neurofilament light chain as a Parkinson's disease biomarker. Methods We quantified neurofilament light chain in 2 independent cohorts: (1) longitudinal cerebrospinal fluid samples from the longitudinal de novo Parkinson's disease cohort and (2) a large longitudinal cohort with serum samples from Parkinson's disease, other cognate/neurodegenerative disorders, healthy controls, prodromal conditions, and mutation carriers. Results In the Parkinson's Progression Marker Initiative cohort, mean baseline serum neurofilament light chain was higher in Parkinson's disease patients (13 +/- 7.2 pg/mL) than in controls (12 +/- 6.7 pg/mL),P= 0.0336. Serum neurofilament light chain increased longitudinally in Parkinson's disease patients versus controls (P< 0.01). Motor scores were positively associated with neurofilament light chain, whereas some cognitive scores showed a negative association. Conclusions Neurofilament light chain in serum samples is increased in Parkinson's disease patients versus healthy controls, increases over time and with age, and correlates with clinical measures of Parkinson's disease severity. Although the specificity of neurofilament light chain for Parkinson's disease is low, it is the first blood-based biomarker candidate that could support disease stratification of Parkinson's disease versus other cognate/neurodegenerative disorders, track clinical progression, and possibly assess responsiveness to neuroprotective treatments. However, use of neurofilament light chain as a biomarker of response to neuroprotective interventions remains to be assessed. (c) 2020 The Authors.Movement Disorderspublished by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society.
  •  
13.
  •  
14.
  • Oresic, Matej, 1967-, et al. (författare)
  • Phospholipids and insulin resistance in psychosis : A lipidomics study of twin pairs discordant for schizophrenia
  • 2012
  • Ingår i: Genome Medicine. - : BioMed Central. - 1756-994X. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Several theories have been proposed to conceptualize the pathological processes inherent to schizophrenia. The 'prostaglandin deficiency' hypothesis postulates that defective enzyme systems converting essential fatty acids to prostaglandins lead to diminished levels of prostaglandins, which in turn affect synaptic transmission.Methods: Here we sought to determine the lipidomic profiles associated with schizophrenia in twin pairs discordant for schizophrenia as well as unaffected twin pairs. The study included serum samples from 19 twin pairs discordant for schizophrenia (mean age 51 +/- 10 years; 7 monozygotic pairs; 13 female pairs) and 34 age and gender matched healthy twins as controls. Neurocognitive assessment data and gray matter density measurements taken from high-resolution magnetic resonance images were also obtained. A lipidomics platform using ultra performance liquid chromatography coupled to time-of-flight mass spectrometry was applied for the analysis of serum samples.Results: In comparison to their healthy co-twins, the patients had elevated triglycerides and were more insulin resistant. They had diminished lysophosphatidylcholine levels, which associated with decreased cognitive speed.Conclusions: Our findings may be of pathophysiological relevance since lysophosphatidylcholines, byproducts of phospholipase A2-catalyzed phospholipid hydrolysis, are preferred carriers of polyunsaturated fatty acids across the blood-brain barrier. Furthermore, diminishment of lysophosphatidylcholines suggests that subjects at risk of schizophrenia may be more susceptible to infections. Their association with cognitive speed supports the view that altered neurotransmission in schizophrenia may be in part mediated by reactive lipids such as prostaglandins.
  •  
15.
  • Rhodes, Emma, et al. (författare)
  • The impact of amyloid burden and APOE on rates of cognitive impairment in late life depression
  • 2021
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877. ; 80:3, s. 991-1002
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cognitive impairment (CI) is a key feature of late life depression (LLD), but the contribution of underlying neurodegenerative pathology remains unclear. Objective: To evaluate cognitive dysfunction in LLD relative to a sample of nondepressed (ND) older adults with matched levels of memory impairment and amyloid-β (Aβ) burden. Methods: Participants included 120 LLD and 240 ND older adults matched on age, education, sex, Mini-Mental State Exam, mild cognitive impairment diagnosis, and PET Aβ burden. Results: LLD showed higher rates of impairment relative to ND with 54.6% of the LLD sample demonstrating impairment in at least one cognitive domain compared to 42.9% of controls (H = 7.13, p = 0.008). LLD had poorer performance and higher rates of impairment on Rey Auditory Verbal Learning Test learning and memory compared to controls. In the overall sample, Aβ positivity was associated with worse performance on Logical Memory I (p = 0.044), Logical Memory II (p = 0.011), and Trail Making Test -B (p = 0.032), and APOE ϵ4 genotype was associated with worse performance on Logical Memory I (p =0.022); these relationships did not differ between LLD and ND. Conclusion: LLD showed higher rates of CI driven by focal deficits in verbal learning and memory. Alzheimer's disease (AD) biomarkers were associated with worse performance on timed set-shifting and story learning and memory, and these relationships were not impacted by depression status. These findings suggest that AD may account for a portion of previously reported multi-domain CI in LLD and highlight the potential for AD to confound studies of cognition in LLD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy