SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tonkin Jonathan D.) "

Sökning: WFRF:(Tonkin Jonathan D.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maasri, Alain, et al. (författare)
  • A global agenda for advancing freshwater biodiversity research
  • 2022
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 25:2, s. 255-263
  • Tidskriftsartikel (refereegranskat)abstract
    • Global freshwater biodiversity is declining dramatically, and meeting the challenges of this crisis requires bold goals and the mobilisation of substantial resources. While the reasons are varied, investments in both research and conservation of freshwater biodiversity lag far behind those in the terrestrial and marine realms. Inspired by a global consultation, we identify 15 pressing priority needs, grouped into five research areas, in an effort to support informed stewardship of freshwater biodiversity. The proposed agenda aims to advance freshwater biodiversity research globally as a critical step in improving coordinated actions towards its sustainable management and conservation. 
  •  
2.
  • Tiegs, Scott D., et al. (författare)
  • Global patterns and drivers of ecosystem functioning in rivers and riparian zones
  • 2019
  • Ingår i: Science Advances. - Washington : American Association of Advancement in Science. - 2375-2548. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
  •  
3.
  • Haase, Peter, et al. (författare)
  • Moderate warming over the past 25 years has already reorganized stream invertebrate communities
  • 2019
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 658, s. 1531-1538
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming often results in species range shifts, biodiversity loss and accumulated climatic debts of biota (i.e. slower changes in biota than in temperature). Here, we analyzed the changes in community composition and temperature signature of stream invertebrate communities over 25 years (1990-€“2014), based on a large set of samples (n = 3782) over large elevation, latitudinal and longitudinal gradients in central Europe. Although warming was moderate (average 0.5°C), we found a strong reorganization of stream invertebrate communities. Total abundance (+35.9%) and richness (+39.2%) significantly increased. The share of abundance (TA) and taxonomic richness (TR) of warm-dwelling taxa (TA: +73.2%; TR: +60.2%) and medium-temperature-dwelling taxa (TA: +0.4%; TR: +5.8%) increased too, while cold-dwelling taxa declined (TA: -61.5%; TR: -ˆ’47.3%). The community temperature index, representing the temperature signature of stream invertebrate communities, increased at a similar pace to physical temperature, indicating a thermophilization of the communities and, for the first time, no climatic debt. The strongest changes occurred along the altitudinal gradient, suggesting that stream invertebrates use the spatial configuration of river networks to track their temperature niche uphill. Yet, this may soon come to an end due to the summit trap effect. Our results indicate an ongoing process of replacement of cold-adapted species by thermophilic species at only 0.5 °C warming, which is particularly alarming in the light of the more drastic climate warming projected for coming decades.
  •  
4.
  • Jourdan, Jonas, et al. (författare)
  • Effects of changing climate on European stream invertebrate communities : A long-term data analysis
  • 2018
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 621, s. 588-599
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10–32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures.
  •  
5.
  • Manfrin, Alessandro, et al. (författare)
  • Taxonomic and functional reorganization in Central European stream macroinvertebrate communities over 25 years
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 889
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming can lead to a replacement of species that favour cold temperatures by species that favour warm temperatures. However, the implications of such thermic shifts for the functioning of ecosystems remain poorly understood. Here, we used stream macroinvertebrate biological and ecological traits to quantify the relative contribution of cold, intermediate and warm temperature-adapted taxa to changes in community functional diversity (FD) using a dataset of 3781 samples collected in Central Europe over 25 years, from 1990 to 2014.Our analyses indicated that functional diversity of stream macroinvertebrate communities increased over the study period. This gain was driven by a net 39 % increase in the richness of taxa that favour intermediate temperatures, which comprise the highest share in the community, and to a 97 % increase in the richness of taxa that favour warm temperatures. These warm temperature-adapted taxa displayed a distinct and more diverse suite of functional traits compared to the cold temperature-adapted group and thus contributed disproportionately to local FD on a per-taxon basis. At the same time, taxonomic beta-diversity declined significantly within each thermal group, in association with increasing local taxon richness.This study shows that over recent decades, small low-mountain streams in Central Europe have experienced a process of thermophilization and increasing functional diversity at local scales. However, a progressive homogenisation occurred at the regional scale, with communities converging towards similar taxonomic composition. As the reported increase in local functional diversity can be attributed mostly to the intermediate temperature-adapted taxa and a few expanding warm temperature-adapted taxa, these patterns could mask more subtle loss of sensitive cold temperature-adapted taxa with irreplaceable functional traits. In light of increasing climate warming, preservation of cold habitat refuges, should be considered a priority in river conservation.
  •  
6.
  • Pilotto, Francesca, et al. (författare)
  • Diverging response patterns of terrestrial and aquatic species to hydromorphological restoration
  • 2019
  • Ingår i: Conservation Biology. - : John Wiley & Sons. - 0888-8892 .- 1523-1739. ; 33:1, s. 132-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Although experiences with ecological restoration continue to accumulate, the effectiveness of restoration for biota remains debated. We complemented a traditional taxonomic analysis approach with information on 56 species traits to uncover the responses of 3 aquatic (fish, macroinvertebrates, macrophytes) and 2 terrestrial (carabid beetles, floodplain vegetation) biotic groups to 43 hydromorphological river restoration projects in Germany. All taxonomic groups responded positively to restoration, as shown by increased taxonomic richness (10–164%) and trait diversity (habitat, dispersal and mobility, size, form, life history, and feeding groups) (15–120%). Responses, however, were stronger for terrestrial than aquatic biota, and, contrary to our expectation, taxonomic responses were stronger than those of traits. Nevertheless, trait analysis provided mechanistic insights into the drivers of community change following restoration. Trait analysis for terrestrial biota indicated restoration success was likely enhanced by lateral connectivity and reestablishment of dynamic processes in the floodplain. The weaker response of aquatic biota suggests recovery was hindered by the persistence of stressors in the aquatic environment, such as degraded water quality, dispersal constraints, and insufficient hydromorphological change. Therefore, river restoration requires combined local- and regional-scale approaches to maximize the response of both aquatic and terrestrial organisms. Due to the contrasting responses of aquatic and terrestrial biota, the planning and assessment of river restoration outcomes should consider effects on both components of riverine landscapes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy