SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Treviño Morales Sandra 1985) "

Sökning: WFRF:(Treviño Morales Sandra 1985)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tafoya Martinez, Daniel, 1981, et al. (författare)
  • (Sub)millimeter emission lines of molecules in born-again stars
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Born-again stars provide a unique possibility to study the evolution of the circumstellar envelope of evolved stars in human timescales. Up until now, most of the observations of the circumstellar material in these stars have been limited to studying the relatively hot gas and dust. In other evolved stars, the emission from rotational transitions of molecules, such as CO, is commonly used to study the cool component of their circumstellar envelopes. Thus, the detection and study of molecular gas in born-again stars is of great importance when attempting to understand their composition and chemical evolution. In addition, the molecular emission is an invaluable tool for exploring the physical conditions, kinematics, and formation of asymmetric structures in the circumstellar envelopes of these evolved stars. However, up until now, all attempts to detect molecular emission from the cool material around born-again stars have failed. Aims. We searched for emission from rotational transitions of molecules in the hydrogen-deficient circumstellar envelopes of born-again stars to explore the chemical composition, kinematics, and physical parameters of the relatively cool gas. Methods. We carried out observations using the APEX and IRAM 30 m telescopes to search for molecular emission toward four well-studied born-again stars, V4334 Sgr, V605 Aql, A30, and A78, that are thought to represent an evolutionary sequence. Results. For the first time, we detected emission from HCN and (IICN)-C-13 molecules toward V4334 Sgr, and CO emission in V605 Aql. No molecular emission was detected above the noise level toward A30 and A78. The detected lines exhibit broad linewidths greater than or similar to 150 km s(-1), which indicates that the emission comes from gas ejected during the born-again event, rather than from the old planetary nebula. A first estimate of the (HCN)-C-12/(HCN)-C-13 abundance ratio in the circumstellar environment of V4334 Sgr is approximate to 3, which is similar to the value of the C-12/C-13 ratio measured from other observations. We derived a rotational temperature of T-rot = 13 +/- 1 K, and a total column density of N-HCN = 1.6 +/- 0.1 x 10(16) cm(-2) for V4334 Sgr. This result sets a lower limit on the amount of hydrogen that was ejected into the wind during the born-again event of this source. For V605 Aql, we obtained a lower limit for the integrated line intensities I-12CO/I-13CO > 4.
  •  
2.
  •  
3.
  • Alonso-Albi, T., et al. (författare)
  • Revisiting the case of R Monocerotis: Is CO removed at R
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. To our knowledge, R Mon is the only B0 star in which a gaseous Keplerian disk has been detected. However, there is some controversy about the spectral type of R Mon. Some authors propose that it could be a later B8e star, where disks are more common. Aims. Our goal is to re-evaluate the R Mon spectral type and characterize its protoplanetary disk. Methods. The spectral type of R Mon has been re-evaluated using the available continuum data and UVES emission lines. We used a power-law disk model to fit previous12CO 1 →0 and 2 →1 interferometric observations and the PACS CO data to investigate the disk structure. Interferometric detections of13CO J = 1 →0, HCO+1 →0, and CN 1 →0 lines using the IRAM Plateau de Bure Interferometer (PdBI) are presented. The HCN 1 →0 line was not detected. Results. Our analysis confirms that R Mon is a B0 star. The disk model compatible with the12CO 1 →0 and 2 →1 interferometric observations falls short of predicting the observed fluxes of the 14 < Ju< 31 PACS lines; this is consistent with the scenario in which some contribution to these lines is coming from a warm envelope and/or UV-illuminated outflow walls. More interestingly, the upper limits to the fluxes of the Ju> 31 CO lines suggest the existence of a region empty of CO at R ? 20 au in the protoplanetary disk. The intense emission of the HCO+and CN lines shows the strong influence of UV photons on gas chemistry. Conclusions. The observations gathered in this paper are consistent with the presence of a transition disk with a cavity of Rin≥ 20 au around R Mon. This size is similar to the photoevaporation radius that supports the interpretation that UV photoevaporation is main disk dispersal mechanism in massive stars.
  •  
4.
  • Bulut, N., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): III. Unlocking the CS chemistry: The CS+O reaction
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Carbon monosulphide (CS) is among the most abundant gas-phase S-bearing molecules in cold dark molecular clouds. It is easily observable with several transitions in the millimeter wavelength range, and has been widely used as a tracer of the gas density in the interstellar medium in our Galaxy and external galaxies. However, chemical models fail to account for the observed CS abundances when assuming the cosmic value for the elemental abundance of sulfur. Aims. The CS+O → CO + S reaction has been proposed as a relevant CS destruction mechanism at low temperatures, and could explain the discrepancy between models and observations. Its reaction rate has been experimentally measured at temperatures of 150-400 K, but the extrapolation to lower temperatures is doubtful. Our goal is to calculate the CS+O reaction rate at temperatures <150 K which are prevailing in the interstellar medium. Methods. We performed ab initio calculations to obtain the three lowest potential energy surfaces (PES) of the CS+O system. These PESs are used to study the reaction dynamics, using several methods (classical, quantum, and semiclassical) to eventually calculate the CS + O thermal reaction rates. In order to check the accuracy of our calculations, we compare the results of our theoretical calculations for T ~ 150-400 K with those obtained in the laboratory. Results. Our detailed theoretical study on the CS+O reaction, which is in agreement with the experimental data obtained at 150-400 K, demonstrates the reliability of our approach. After a careful analysis at lower temperatures, we find that the rate constant at 10 K is negligible, below 10-15 cm s-1, which is consistent with the extrapolation of experimental data using the Arrhenius expression. Conclusions. We use the updated chemical network to model the sulfur chemistry in Taurus Molecular Cloud 1 (TMC 1) based on molecular abundances determined from Gas phase Elemental abundances in Molecular CloudS (GEMS) project observations. In our model, we take into account the expected decrease of the cosmic ray ionization rate, ζH2, along the cloud. The abundance of CS is still overestimated when assuming the cosmic value for the sulfur abundance.
  •  
5.
  • Fuente, A., et al. (författare)
  • Gas kinematics of key prebiotic molecules in GV Tau N revealed with an ALMA, PdBI, and Herschel synergy
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 496:4, s. 5330-5340
  • Tidskriftsartikel (refereegranskat)abstract
    • A large effort has been made to detect warm gas in the planet formation zone of circumstellar discs using space and ground-based near-infrared facilities. GV Tau N, the most obscured component of the GV Tau system, is an outstanding source, being one of the first targets detected in HCN and the only one detected in CH4 so far. Although near-infrared observations have shed light on its chemical content, the physical structure and kinematics of the circumstellar matter remained unknown. We use interferometric images of the HCN 3 -> 2 and (CO)-C-13 3 -> 2 lines, and far-IR observations of (CO)-C-13, HCN, CN, and H2O transitions to discern the morphology, kinematics, and chemistry of the dense gas close to the star. These observations constitute the first detection of H2O towards GV Tau N. Moreover, ALMA high spatial resolution (similar to 7 au) images of the continuum at 1.1mm and the HCN 3 -> 2 line resolve different gas components towards GV Tau N, a gaseous disc with R similar to 25 au, an ionized jet, and one (or two) molecular outflows. The asymmetric morphology of the gaseous disc shows that it has been eroded by the jet. All observations can be explained if GV Tau N is binary, and the primary component has a highly inclined individual disc relative to the circumbinary disc. We discuss the origin of the water and the other molecules emission according to this scenario. In particular, we propose that the water emission would come from the disrupted gaseous disc and the molecular outflows.
  •  
6.
  • Fuente, A., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS) I. The prototypical dark cloud TMC 1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 624
  • Tidskriftsartikel (refereegranskat)abstract
    • GEMS is an IRAM 30 m Large Program whose aim is determining the elemental depletions and the ionization fraction in a set of prototypical star-forming regions. This paper presents the first results from the prototypical dark cloud Taurus molecular cloud (TMC) 1. Extensive millimeter observations have been carried out with the IRAM 30 m telescope (3 and 2mm) and the 40 m Yebes telescope (1.3 cm and 7 mm) to determine the fractional abundances of CO, HCO+, HCN, CS, SO, HCS+, and N2H+ in three cuts which intersect the dense filament at the well-known positions TMC 1-CP, TMC 1-NH3, and TMC 1-C, covering a visual extinction range from A(v) similar to 3 to similar to 20 mag. Two phases with differentiated chemistry can be distinguished: (i) the translucent envelope with molecular hydrogen densities of 1-5 x 10(3) cm(-3); and (ii) the dense phase, located at A(v) > 10 mag, with molecular hydrogen densities >10(4) cm(-3). Observations and modeling show that the gas phase abundances of C and O progressively decrease along the C+/C/CO transition zone (A(v) similar to 3 mag) where C/H similar to 8 x 10(-5) and C/O similar to 0.8-1, until the beginning of the dense phase at A(v) similar to 10 mag. This is consistent with the grain temperatures being below the CO evaporation temperature in this region. In the case of sulfur, a strong depletion should occur before the translucent phase where we estimate an S/H similar to (0.4-2.2) x 10(-6), an abundance similar to 7-40 times lower than the solar value. A second strong depletion must be present during the formation of the thick icy mantles to achieve the values of S/H measured in the dense cold cores (S/H similar to 8 x 10(-8)). Based on our chemical modeling, we constrain the value of zeta(H2) to similar to(0.5-1.8) x 10(-16) s(-1) in the translucent cloud.
  •  
7.
  • Fuente, A., et al. (författare)
  • Probing the kinematics and chemistry of the hot core Mon R2 IRS 3 using ALMA observations
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 507:2, s. 1886-1898
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high angular resolution 1.1 mm continuum and spectroscopic Atacama Large Millimeter/submillimeter Array observations of the well-known massive protocluster Mon R2 IRS 3. The continuum image at 1.1 mm shows two components, IRS 3 A and IRS 3 B, that are separated by ∼0.65 arcsec. We estimate that IRS 3 A is responsible of ∼80 per cent of the continuum flux, being the most massive component. We explore the chemistry of IRS 3 A based on the spectroscopic observations. In particular, we have detected intense lines of S-bearing species such as SO, SO2, H2CS, and OCS, and of the complex organic molecules (COMs) methyl formate (CH3OCHO) and dimethyl ether (CH3OCH3). The integrated intensity maps of most species show a compact clump centred on IRS 3 A, except the emission of the COMs that is more intense towards the near-IR nebula located to the south of IRS 3 A, and HC3N whose emission peak is located ∼0.5 arcsec NE from IRS 3 A. The kinematical study suggests that the molecular emission is mainly coming from a rotating ring and/or an unresolved disc. Additional components are traced by the ro-vibrational HCN ν2 = 1 3→2 line which is probing the inner disc/jet region, and the weak lines of CH3OCHO, more likely arising from the walls of the cavity excavated by the molecular outflow. Based on SO2 we derive a gas kinetic temperature of T$_k\, \sim$ 170 K towards the IRS 3 A. The most abundant S-bearing species is SO2 with an abundance of ∼1.3 × 10-7, and χ(SO/SO2) ∼0.29. Assuming the solar abundance, SO2 accounts for ∼1 per cent of the sulphur budget.
  •  
8.
  • Navarro-Almaida, D., et al. (författare)
  • Evolutionary view through the starless cores in Taurus: Deuteration in TMC 1-C and TMC 1-CP
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The chemical and physical evolution of starless and pre-stellar cores are of paramount importance to understanding the process of star formation. The Taurus Molecular Cloud cores TMC 1-C and TMC 1-CP share similar initial conditions and provide an excellent opportunity to understand the evolution of the pre-stellar core phase. Aims. We investigated the evolutionary stage of starless cores based on observations towards the prototypical dark cores TMC 1-C and TMC 1-CP. Methods. We mapped the prototypical dark cores TMC 1-C and TMC 1-CP in the CS 3 → 2, C34S 3 → 2, 13CS 2 → 1, DCN 1 → 0, DCN 2 → 1, DNC 1 → 0, DNC 2 → 1, DN13C 1 → 0, DN13C 2 → 1, N2H+ 1 → 0, and N2D+ 1 → 0 transitions. We performed a multi-transitional study of CS and its isotopologs, DCN, and DNC lines to characterize the physical and chemical properties of these cores. We studied their chemistry using the state-of-the-art gas-grain chemical code NAUTILUS and pseudo time-dependent models to determine their evolutionary stage. Results. The central nH volume density, the N2H+ column density, and the abundances of deuterated species are higher in TMC 1-C than in TMC 1-CP, yielding a higher N2H+ deuterium fraction in TMC 1-C, thus indicating a later evolutionary stage for TMC 1-C. The chemical modeling with pseudo time-dependent models and their radiative transfer are in agreement with this statement, allowing us to estimate a collapse timescale of ~1 Myr for TMC 1-C. Models with a younger collapse scenario or a collapse slowed down by a magnetic support are found to more closely reproduce the observations towards TMC 1-CP. Conclusions. Observational diagnostics seem to indicate that TMC 1-C is in a later evolutionary stage than TMC 1-CP, with a chemical age ~1 Myr. TMC 1-C shows signs of being an evolved core at the onset of star formation, while TMC 1-CP appears to be in an earlier evolutionary stage due to a more recent formation or, alternatively, a collapse slowed down by a magnetic support.
  •  
9.
  • Navarro-Almaida, D., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): II. On the quest for the sulphur reservoir in molecular clouds: the H2S case
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium and the identity of the main sulphur reservoir is still an open question. Aims. Our goal is to investigate the H2S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir. Methods. Using millimeter observations of CS, SO, H2S, and their isotopologues, we determine the physical conditions and H2S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model NAUTILUS is used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H2S abundance. Results. Our modeling shows that chemical desorption is the main source of gas-phase H2S in dark cores. The measured H2S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when n(H) > 2 x 10(4). This change in the desorption rate is consistent with the formation of thick H2O and CO ice mantles on grain surfaces. The observed SO and H2S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of 5-10. Along the three cores, atomic S is predicted to be the main sulphur reservoir. Conclusions. The gaseous H2S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H2S. The behavior of the observed H2S abundance suggests a changing desorption efficiency, which would probe the snowline in these cold cores. Our model, however, highly overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, we can only conclude that our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.
  •  
10.
  • Riviere-Marichalar, P., et al. (författare)
  • AB Aur, a Rosetta stone for studies of planet formation: I. Chemical study of a planet-forming disk
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. AB Aur is a Herbig Ae star that hosts a prototypical transition disk. The disk shows a plethora of features connected with planet formation mechanisms, such as spiral arms, dust cavities, and dust traps. Understanding the physical and chemical characteristics of these features is crucial to advancing our knowledge of the planet formation processes. Aims. We aim to characterize the gaseous disk around the Herbig Ae star AB Aur. A complete spectroscopic study was performed using NOEMA to determine the physical and chemical conditions with high spatial resolution. Methods. We present new NOrthern Extended Millimeter Array (NOEMA) interferometric observations of the continuum and (CO)-C-12, (CO)-C-13, (CO)-O-18, H2CO, and SO lines obtained at high resolution. We used the integrated intensity maps and stacked spectra to derive reliable estimates of the disk temperature. By combining our (CO)-C-13 and (CO)-O-18 observations, we computed the gas-to-dust ratio along the disk. We also derived column density maps for the different species and used them to compute abundance maps. The results of our observations were compared with a set of Nautilus astrochemical models to obtain insight into the disk properties. Results. We detected continuum emission in a ring that extends from 0.6 '' to similar to 2.0 '', peaking at 0.97 '' and with a strong azimuthal asymmetry. The molecules observed show different spatial distributions, and the peaks of the distributions are not correlated with the binding energy. Using H2CO and SO lines, we derived a mean disk temperature of 39 K. We derived a gas-to-dust ratio that ranges from 10 to 40 along the disk. Abundance with respect to (CO)-C-13 for SO (similar to 2 x 10(-4)) is almost one order of magnitude greater than the value derived for H2CO (1.6 x 10(-5)). The comparison with Nautilus models favors a disk with a low gas-to-dust ratio (40) and prominent sulfur depletion. Conclusions. From a very complete spectroscopic study of the prototypical disk around AB Aur, we derived, for the first time, the gas temperature and the gas-to-dust ratio along the disk, providing information that is essential to constraining hydrodynamical simulations. Moreover, we explored the gas chemistry and, in particular, the sulfur depletion. The derived sulfur depletion is dependent on the assumed C/O ratio. Our data are better explained with C/O similar to 0.7 and S/H = 8 x 10(-8).
  •  
11.
  • Riviere-Marichalar, Pablo, et al. (författare)
  • Gas Accretion within the Dust Cavity in AB Aur
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 879:1
  • Tidskriftsartikel (refereegranskat)abstract
    • AB Aur is a Herbig Ae star hosting a well-known transitional disk. Because of its proximity and low inclination angle, it is an excellent object to study planet formation. Our goal is to investigate the chemistry and dynamics of the molecular gas component in the AB Aur disk, and its relation with the prominent horseshoe shape observed in continuum mm emission. We used the Northern Extended Milimeter Array interferometer to map with high angular resolution the J = 3-2 lines of HCO+ and HCN. By combining both, we can gain insight into the AB Aur disk structure. Chemical segregation is observed in the AB Aur disk: HCO+ shows intense emission toward the star position, at least one bright molecular bridge within the dust cavity, and ring-like emission at larger radii, while HCN is only detected in an annular ring that is coincident with the dust ring and presents an intense peak close to the dust trap. We use HCO+ to investigate the gas dynamics inside the cavity. The observed bright HCO+ bridge connects the compact central source with the outer dusty ring. This bridge can be interpreted as an accretion flow from the outer ring to the inner disk/jet system proving gas accretion through the cavity.
  •  
12.
  • Rodríguez-Baras, M., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): IV. Observational results and statistical trends
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • Gas phase Elemental abundances in Molecular CloudS (GEMS) is an IRAM 30 m Large Program designed to provide estimates of the S, C, N, and O depletions and gas ionization degree, X(e-), in a selected set of star-forming filaments of Taurus, Perseus, and Orion. Our immediate goal is to build up a complete and large database of molecular abundances that can serve as an observational basis for estimating X(e-) and the C, O, N, and S depletions through chemical modeling. We observed and derived the abundances of 14 species (13CO, C18O, HCO+, H13CO+, HC18O+, HCN, H13CN, HNC, HCS+, CS, SO, 34SO, H2S, and OCS) in 244 positions, covering the AV ~3 to ~100 mag, n(H2) ~ a few 103 to 106 cm-3, and Tk ~10 to ~30 K ranges in these clouds, and avoiding protostars, HII regions, and bipolar outflows. A statistical analysis is carried out in order to identify general trends between different species and with physical parameters. Relations between molecules reveal strong linear correlations which define three different families of species: (1) 13CO and C18O isotopologs; (2) H13CO+, HC18O+, H13 CN, and HNC; and (3) the S-bearing molecules. The abundances of the CO isotopologs increase with the gas kinetic temperature until TK ~ 15 K. For higher temperatures, the abundance remains constant with a scatter of a factor of ~3. The abundances of H13 CO+, HC18 O+, H13 CN, and HNC are well correlated with each other, and all of them decrease with molecular hydrogen density, following the law ∝ n(H2)-0.8  ±  0.2. The abundances of S-bearing species also decrease with molecular hydrogen density at a rate of (S-bearing/H)gas ∝ n(H2)-0.6  ±  0.1. The abundances of molecules belonging to groups 2 and 3 do not present any clear trend with gas temperature. At scales of molecular clouds, the C18O abundance is the quantity that better correlates with the cloud mass. We discuss the utility of the 13CO/C18O, HCO+/H13CO+, and H13 CO+/H13CN abundance ratios as chemical diagnostics of star formation in external galaxies.
  •  
13.
  • Tafoya, Daniel, 1981, et al. (författare)
  • First Images of the Molecular Gas around a Born-again Star Revealed by ALMA
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 925:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Born-again stars allow probing stellar evolution in human timescales and provide the most promising path for the formation of hydrogen-deficient post-asymptotic giant branch objects, but their cold and molecular components remain poorly explored. Here we present ALMA observations of V 605 Aql that unveil for the first time the spatio-kinematic distribution of the molecular material associated with a born-again star. Both the continuum and molecular line emission exhibit a clumpy ring-like structure with a total extent of approximate to 1 '' in diameter. The bulk of the molecular emission is interpreted as being produced in a radially expanding disk-like structure with an expansion velocity v(exp) similar to 90 km s(-1) and an inclination i approximate to 60 degrees with respect to the line of sight. The observations also reveal a compact high-velocity component, v(exp) similar to 280 km s(-1), that is aligned perpendicularly to the expanding disk. This component is interpreted as a bipolar outflow with a kinematical age tau less than or similar to 20 yr, which could either be material that is currently being ejected from V 605 Aql, or is being dragged from the inner parts of the disk by a stellar wind. The dust mass of the disk is in the range M-dust similar to 0.2-8 x 10(-3) M-circle dot, depending on the dust absorption coefficient. The mass of the CO is MCO approximate to 1.1 x 10(-5) M-circle dot, which is more than three orders of magnitude larger than the mass of the other detected molecules. We estimate a C-12/C-13 ratio of 5.6 +/- 0.6, which is consistent with the single stellar evolution scenario in which the star experienced a very late thermal pulse instead of a nova-like event as previously suggested.
  •  
14.
  • Treviño Morales, Sandra, 1985 (författare)
  • Chemical and dynamical study towards the UC HII region Monoceros R2
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • One of the first signposts of high-mass star formation is the presence of compact regions of ionized gas (called HII regions), surrounded by layers of atomic and molecular gas (photon-dominated regions or PDRs). The study of the properties (e. g., dynamics, chemistry, structure) of these objects is of special interest because they provide information on the dynamical and chemical evolution in the formation of high-mass stars. The main objective of this thesis is to characterize the chemistry and dynamics of the ultracompact HII region and PDR system in Monoceros R2: the closest object of this type that stands out as an ideal case to study the transition from ionized to molecular gas. We have carried out large-scale (163.5 arcmin2) mapping of the Monoceros R2 cloud in the 13CO (1-0), C18O (1-0), HCN (1-0), and N2H+ (1-0) lines. These maps show that the cloud has a filamentary structure with the gas infalling along the filaments towards the central hub with accretion rates of 10(-4) - 10(-3) Msun/yr. In order to explore the influence of the UV radiation on the chemistry, we carried out an unbiased spectral line survey towards the Mon R2 region covering a frequency range from 84 to 350 GHz. Our data show that a high UV PDR has been formed around the HII region with intense emission of HCN, DCN, CN, CO+, CF+ and C2H species. A pseudo-time-dependent gas-phase chemical model has been used to interpret the emission of the deuterated compounds. The deuteration fraction measured in the dense clumps around the HII region is consistent with the chemical age of a few 10(5) yr.
  •  
15.
  • Treviño Morales, Sandra, 1985, et al. (författare)
  • Dynamics of cluster-forming hub-filament systems The case of the high-mass star-forming complex Monoceros R2
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 629
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. High-mass stars and star clusters commonly form within hub-filament systems. Monoceros R2 (hereafter Mon R2), at a distance of 830 pc, harbors one of the closest of these systems, making it an excellent target for case studies. Aims. We investigate the morphology, stability and dynamical properties of the Mon R2 hub-filament system. Methods. We employed observations of the (CO)-C-13 and (CO)-O-18 1 -> 0 and 2 -> 1 lines obtained with the IRAM-30m telescope. We also used H-2 column density maps derived from Herschel dust emission observations. Results. We identified the filamentary network in Mon R-2 with the DisPerSE algorithm and characterized the individual filaments as either main (converging into the hub) or secondary (converging to a main filament). The main filaments have line masses of 30-100 M-circle dot pc(-1) and show signs of fragmentation, while the secondary filaments have line masses of 12-60 M-circle dot pc(-1) and show fragmentation only sporadically. In the context of Ostriker's hydrostatic filament model, the main filaments are thermally supercritical. If non-thermal motions are included, most of them are transcritical. Most of the secondary filaments are roughly transcritical regardless of whether non-thermal motions are included or not. From the morphology and kinematics of the main filaments, we estimate a mass accretion rate of 10(-4)-10(-3) M-circle dot yr(-1) into the central hub. The secondary filaments accrete into the main filaments at a rate of 0.1-0.4 x 10(-4) M-circle dot yr(-1). The main filaments extend into the central hub. Their velocity gradients increase toward the hub, suggesting acceleration of the gas. We estimate that with the observed infall velocity, the mass-doubling time of the hub is similar to 2.5 Myr, ten times longer than the free-fall time, suggesting a dynamically old region. These timescales are comparable with the chemical age of the HII region. Inside the hub, the main filaments show a ring-or a spiral-like morphology that exhibits rotation and infall motions. One possible explanation for the morphology is that gas is falling into the central cluster following a spiral-like pattern.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy