SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tunved Peter) "

Sökning: WFRF:(Tunved Peter)

  • Resultat 1-25 av 91
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahn, Seo H., et al. (författare)
  • Relationship between cloud condensation nuclei (CCN) concentration and aerosol optical depth in the Arctic region
  • 2021
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 267
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine the direct and indirect effects of aerosols on climate, it is important to know the spatial and temporal variations in cloud condensation nuclei (CCN) concentrations. Although many types of CCN measurements are available, extensive CCN measurements are challenging because of the complexity and high operating cost, especially in remote areas. As aerosol optical depth (AOD) can be readily observed by remote sensing, many attempts have been made to estimate CCN concentrations from AOD. In this study, the CCN-AOD relationship is parameterized based on CCN ground measurements from the Zeppelin Observatory (78.91 degrees N, 11.89 degrees E, 474 m asl) in the Arctic region. The AOD measurements were obtained from the Ny-Alesund site (78.923 degrees N, 11.928 degrees E) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 reanalysis. Our results show a CCN-AOD correlation with a coefficient of determination R-2 of 0.59. Three additional estimation models for CCN were presented based on the following data: (i) in situ aerosol chemical composition, (ii) in situ aerosol optical properties, and (iii) chemical composition of AOD obtained from reanalysis data. The results from the model using in situ aerosol optical properties reproduced the observed CCN concentration most efficiently, suggesting that the contribution of BC to CCN concentration should be considered along with that of sulfate.
  •  
2.
  • Artaxo, Paulo, et al. (författare)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
3.
  • Asmi, A., et al. (författare)
  • Number size distributions and seasonality of submicron particles in = rope 2008-2009
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:11, s. 5505-5538
  • Tidskriftsartikel (refereegranskat)abstract
    • Two years of harmonized aerosol number size distribution data from 24 = ropean field monitoring sites have been analysed. The results give a = mprehensive overview of the European near surface aerosol particle = mber concentrations and number size distributions between 30 and 500 = of dry particle diameter. Spatial and temporal distribution of = rosols in the particle sizes most important for climate applications = e presented. We also analyse the annual, weekly and diurnal cycles of = e aerosol number concentrations, provide log-normal fitting parameters = r median number size distributions, and give guidance notes for data = ers. Emphasis is placed on the usability of results within the aerosol = delling community.
  •  
4.
  • Backman, John, et al. (författare)
  • On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic
  • 2017
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 10:12, s. 5039-5062
  • Tidskriftsartikel (refereegranskat)abstract
    • Several types of filter-based instruments are used to estimate aerosol light absorption coefficients. Two significant results are presented based on Aethalometer measurements at six Arctic stations from 2012 to 2014. First, an alternative method of post-processing the Aethalometer data is presented, which reduces measurement noise and lowers the detection limit of the instrument more effectively than box-car averaging. The biggest benefit of this approach can be achieved if instrument drift is minimised. Moreover, by using an attenuation threshold criterion for data post-processing, the relative uncertainty from the electronic noise of the instrument is kept constant. This approach results in a time series with a variable collection time (Delta t) but with a constant relative uncertainty with regard to electronic noise in the instrument. An additional advantage of this method is that the detection limit of the instrument will be lowered at small aerosol concentrations at the expense of temporal resolution, whereas there is little to no loss in temporal resolution at high aerosol concentrations (>2.1-6.7Mm(-1) as measured by the Aethalometers). At high aerosol concentrations, minimising the detection limit of the instrument is less critical. Additionally, utilising co-located filter-based absorption photometers, a correction factor is presented for the Arctic that can be used in Aethalometer corrections available in literature. The correction factor of 3.45 was calculated for low-elevation Arctic stations. This correction factor harmonises Aethalometer attenuation coefficients with light absorption coefficients as measured by the co-located light absorption photometers. Using one correction factor for Arctic Aethalometers has the advantage that measurements between stations become more inter-comparable.
  •  
5.
  • Beddows, D. C. S., et al. (författare)
  • Variations in tropospheric submicron particle size distributions across the European continent 2008-2009
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:8, s. 4327-4348
  • Tidskriftsartikel (refereegranskat)abstract
    • Cluster analysis of particle number size distributions from background sites across Europe is presented. This generated a total of nine clusters of particle size distributions which could be further combined into two main groups, namely: a south-to-north category (four clusters) and a west-to-east category (five clusters). The first group was identified as most frequently being detected inside and around northern Germany and neighbouring countries, showing clear evidence of local afternoon nucleation and growth events that could be linked to movement of air masses from south to north arriving ultimately at the Arctic contributing to Arctic haze. The second group of particle size spectra proved to have narrower size distributions and collectively showed a dependence of modal diameter upon the longitude of the site (west to east) at which they were most frequently detected. These clusters indicated regional nucleation (at the coastal sites) growing to larger modes further inland. The apparent growth rate of the modal diameter was around 0.6-0.9 nm h(-1). Four specific air mass back-trajectories were successively taken as case studies to examine in real time the evolution of aerosol size distributions across Europe. While aerosol growth processes can be observed as aerosol traverses Europe, the processes are often obscured by the addition of aerosol by emissions en route. This study revealed that some of the 24 stations exhibit more complex behaviour than others, especially when impacted by local sources or a variety of different air masses. Overall, the aerosol size distribution clustering analysis greatly simplifies the complex data set and allows a description of aerosol aging processes, which reflects the longer-term average development of particle number size distributions as air masses advect across Europe.
  •  
6.
  • Bisht, D. S., et al. (författare)
  • Tethered balloon-born and ground-based measurements. of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India
  • 2016
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 573, s. 894-905
  • Tidskriftsartikel (refereegranskat)abstract
    • The ground and vertical profiles of particulate matter (PM) were mapped as part of a pilot study using a Tethered balloon within the lower troposphere (1000 m) during the foggy episodes in the winter season of 2015-16 in New Delhi, India. Measurements of black carbon (BC) aerosol and PM <2.5 and 10 mu m (PM2.5 &PM-10 respectively) concentrations and their associated particulate optical properties along with meteorological parameters were made. The mean concentrations of PM2.5, PM10, BC370 (nm), and BC880 nm were observed to be 146.8 +/- 42.1, 245.4 +/- 65.4, 30.3 +/- 122, and 24.1 +/- 103 mu g m(-3), respectively. The mean value of PM2.5 was similar to 12 times higher than the annual US-EPA air quality standard. The fraction of BC in PM2.5 that contributed to absorption in the shorter visible wavelengths (BC370 nm) was-21%. Compared to clear days, the ground level mass concentrations of PM2.5 and BC370 nm particles were substantially increased (59% and 24%, respectively) during the foggy episode. The aerosol light extinction coefficient (sigma(ext)) value was much higher (mean: 610 Mm(-1)) during the lower visibility (foggy) condition. Higher concentrations of PM2.5 (89 mu g m(-3)) and longer visible wavelength absorbing BC880 am (25.7 mu g m(-3)) particles were observed up to 200 m. The BC880 nm and PM2.5 aerosol concentrations near boundary layer (1 km) were significantly higher (similar to 1.9 and 12 mu g m(-3)), respectively. The BC (i.e BCtot) aerosol direct radiative forcing (DRF) values were estimated at the top of the atmosphere (TOA), surface (SFC), and atmosphere (ATM) and its resultant forcing were- 75.5 Wm(-2) at SFC indicating the cooling effect at the surface. A positive value (20.9 Wm(-2)) of BC aerosol DRF at TOA indicated the warming effect at the top of the atmosphere over the study region. The net DRF value due to BC aerosol was positive (96.4 Wm(-2)) indicating a net warming effect in the atmosphere. The contribution of fossil and biomass fuels to the observed BC aerosol DRF values was -78% and-22%, respectively. The higher mean atmospheric heating rate (2.71 K clay(-1)) by BC aerosol in the winter season would probably strengthen the temperature inversion leading to poor dispersion and affecting the formation of clouds. Serious detrimental impacts on regional climate due to the high concentrations of BC and PM (especially PM2.5) aerosol are likely based on this study and suggest the need for immediate, stringent measures to improve the regional air quality in the northern India.
  •  
7.
  • Boyer, Matthew, et al. (författare)
  • A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation : insights from the Multidisciplinarydrifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:1, s. 389-415
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic environment is rapidly changing due to accelerated warming in the region. The warming trend is driving a decline in sea ice extent, which thereby enhances feedback loops in the surface energy budget in the Arctic. Arctic aerosols play an important role in the radiative balance and hence the climate response in the region, yet direct observations of aerosols over the Arctic Ocean are limited. In this study, we investigate the annual cycle in the aerosol particle number size distribution (PNSD), particle number concentration (PNC), and black carbon (BC) mass concentration in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. This is the first continuous, year-long data set of aerosol PNSD ever collected over the sea ice in the central Arctic Ocean. We use a k-means cluster analysis, FLEXPART simulations, and inverse modeling to evaluate seasonal patterns and the influence of different source regions on the Arctic aerosol population. Furthermore, we compare the aerosol observations to land-based sites across the Arctic, using both long-term measurements and observations during the year of the MOSAiC expedition (2019–2020), to investigate interannual variability and to give context to the aerosol characteristics from within the central Arctic. Our analysis identifies that, overall, the central Arctic exhibits typical seasonal patterns of aerosols, including anthropogenic influence from Arctic haze in winter and secondary aerosol processes in summer. The seasonal pattern corresponds to the global radiation, surface air temperature, and timing of sea ice melting/freezing, which drive changes in transport patterns and secondary aerosol processes. In winter, the Norilsk region in Russia/Siberia was the dominant source of Arctic haze signals in the PNSD and BC observations, which contributed to higher accumulation-mode PNC and BC mass concentrations in the central Arctic than at land-based observatories. We also show that the wintertime Arctic Oscillation (AO) phenomenon, which was reported to achieve a record-breaking positive phase during January–March 2020, explains the unusual timing and magnitude of Arctic haze across the Arctic region compared to longer-term observations. In summer, the aerosol PNCs of the nucleation and Aitken modes are enhanced; however, concentrations were notably lower in the central Arctic over the ice pack than at land-based sites further south. The analysis presented herein provides a current snapshot of Arctic aerosol processes in an environment that is characterized by rapid changes, which will be crucial for improving climate model predictions, understanding linkages between different environmental processes, and investigating the impacts of climate change in future Arctic aerosol studies.
  •  
8.
  • Brean, James, et al. (författare)
  • Collective geographical ecoregions and precursor sources driving Arctic new particle formation
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:3, s. 2183-2198
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is a rapidly changing ecosystem, with complex ice–ocean–atmosphere feedbacks. An important process is new particle formation (NPF), from gas-phase precursors, which provides a climate forcing effect. NPF has been studied comprehensively at different sites in the Arctic, ranging from those in the High Arctic and those at Svalbard to those in the continental Arctic, but no harmonised analysis has been performed on all sites simultaneously, with no calculations of key NPF parameters available for some sites. Here, we analyse the formation and growth of new particles from six long-term ground-based stations in the Arctic (Alert, Villum, Tiksi, Zeppelin Mountain, Gruvebadet, and Utqiaġvik). Our analysis of particle formation and growth rates in addition to back-trajectory analysis shows a summertime maxima in the frequency of NPF and particle formation rate at all sites, although the mean frequency and particle formation rates themselves vary greatly between sites, with the highest at Svalbard and lowest in the High Arctic. The summertime growth rate, condensational sinks, and vapour source rates show a slight bias towards the southernmost sites, with vapour source rates varying by around an order of magnitude between the northernmost and southernmost sites. Air masses back-trajectories during NPF at these northernmost sites are associated with large areas of sea ice and snow, whereas events at Svalbard are associated with more sea ice and ocean regions. Events at the southernmost sites are associated with large areas of land and sea ice. These results emphasise how understanding the geographical variation in surface type across the Arctic is key to understanding secondary aerosol sources and providing a harmonised analysis of NPF across the Arctic.
  •  
9.
  • Cirino, Glauber, et al. (författare)
  • Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5
  • 2018
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 191, s. 513-524
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of the Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/5) Experiment, detailed aerosol and trace gas measurements were conducted near Manaus, a metropolis located in the central Amazon Basin. Measurements of aerosol particles and trace gases were done downwind Manaus at the sites T2 (Tiwa Hotel) and T3 (Manacapuru), at a distance of 8 and 70 km from Manaus, respectively. Based on in-plume measurements closer to Manaus (site T2), the chemical signatures of city emissions were used to improve the interpretation of pollutant levels at the T3 site. We derived chemical and physical properties for the city's atmospheric emission ensemble, taking into account only air masses impacted by the Manaus plume at both sites, during the wet and dry season Intensive Operating Periods (IOPs). At T2, average concentrations of aerosol number (CN), CO and SO2 were 5500 cm(-3) (between 10 and 490 nm), 145 ppb and 0.60 ppb, respectively, with a typical ratio ACN/ACO of 60-130 particles cm(-3) ppb(-1). The aerosol scattering (at RH < 60%) and absorption at 637 nm at T2 ranged from 10 to 50 M m(-1) and 5-10 M m(-1), respectively, leading to a mean single scattering albedo (SSA) of 0.70. In addition to identifying periods dominated by Manaus emissions at both T2 and T3, the plume transport between the two sampling sites was studied using back trajectory calculations. Results show that the presence of the Manaus plume at site T3 was important mainly during the daytime and at the end of the afternoons. During time periods directly impacted by Manaus emissions, an average aerosol number concentration of 3200 cm(-3) was measured at T3. Analysis of plume evolution between T2 and T3 indicates a transport time of 4-5 h. Changes of submicron organic and sulfate aerosols ratios relative to CO (Delta OA/Delta CO and Delta SO4/Delta CO, respectively) indicate significant production of secondary organic aerosol (SOA), corresponding to a 40% mass increase in OA and a 30% in SO4 mass concentration. Similarly, during air mass arrival at T3 the SSA increased to 0.83 from 0.70 at T2, mainly associated with an increase in organic aerosol concentration. Aerosol particle size distributions show a strong decrease in the Aitken nuclei mode (10-100 nm) during the transport from T2 to T3, in particular above 30 nm, as a result of efficient coagulation processes into larger particles. A decrease of 30% in the particle number concentration and an increase of about 50 nm in geometric mean diameter were observed from T2 to T3 sites. The study of the evolution of aerosol properties downwind of the city of Manaus improves our understanding of how coupling of anthropogenic and biogenic sources may be impacting the sensitive Amazonian atmosphere.
  •  
10.
  • Cremer, Roxana S., et al. (författare)
  • Airmass Analysis of Size-Resolved Black Carbon Particles Observed in the Arctic Based on Cluster Analysis
  • 2022
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we apply new analysis methods and approaches to existing long-term measurement series that provide additional insights into the atmospheric processes that control black carbon (BC) in the Arctic. Based on clustering size distribution data from Zeppelin Observatory for the years 2002–2010, observations classified as ‘Polluted’ were further investigated based on BC properties. The data were split into two subgroups, and while the microphysical and chemical fingerprints of the two subgroups are very similar, they show larger differences in BC concentration and correlation with the particle size distribution. Therefore, a source–receptor analysis was performed with HYSPLIT 10-days backward trajectories for both subsets. We demonstrate that within this ‘Polluted’ category, the airmasses that contributed to the largest BC signal at the Zeppelin station are not necessarily associated with traditional transport pathways from Eurasia. Instead, the strongest signal is from a region east of the Ural Mountains across the continent to the Kamchatka Peninsula.
  •  
11.
  • Cremer, Roxana S., 1993- (författare)
  • Lifecycle of Black Carbon in the Arctic
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This PhD thesis investigates the atmospheric life cycle of Black Carbon (BC) in the Arctic. The Arctic region has been rapidly changing in the last decades and the role of BC aerosols in this is still uncertain. BC aerosols are mainly produced by incomplete combustion of biomass burning and fossil fuel and stand out from other aerosol species due to their strong ability to absorb solar radiation. The impact of BC on the Earth’s radiation budget is estimated to be overall warming. While the indirect effect, interactions with clouds, is estimated to be negative, the direct radiation effect is positive because of the absorption ability of the BC. These estimates are uncertain, especially for aerosol-cloud interactions. To estimate the role of BC in the Arctic, it is necessary to know the size distribution of BC, the transport pattern and the loss processes that affect the BC concentration. In this thesis, in-situ observations from the Zeppelin observatory in the Arctic, as well as global modelling tools, are used to answer the following research questions: 1. What kind of new insights about BC size distributions can be gained from simultaneous long-term measurements of absorption and aerosol number size distributions? 2. How do source regions impact BC size distributions measured at Zeppelin? 3. How are observations of biomass burning tracers at Zeppelin connected to transport from source regions with active fires? 4. How do emissions, as well as, wet and dry removal pathways drive the diversity of the BC life cycle in General Circulation Models (GCMs)?A statistical method to derive BC size distributions from filter-based absorption measurements was developed and applied to long-term data from the Arctic measurement station Zeppelin on Svalbard. Promising results were obtained for inferring BC number size distributions from absorption and size distribution data, except for the most polluted conditions with the air masses arriving from Northern Eurasia and Russia - as identified from an analysis using back trajectories. Trajectory analysis was also used to link events with elevated biomass burning tracers and BC at Zeppelin to fire activity measured by satellites on the continents around the Arctic. To investigate the interplay of emissions and removal processes of BC in models and to understand the diversity in model representation of BC in the Arctic, a detailed analysis of processes in four GCMs was performed. The BC concentrations in the Arctic were compared and their response to removal processes during long-range transport to Zeppelin. The results underline the importance of BC sources and processing far away from the Arctic.The knowledge gained about the BC life cycle will facilitate a better assessment of the large-scale influence of BC on the Arctic climate and environment.
  •  
12.
  • Croft, Betty, et al. (författare)
  • Processes controlling the annual cycle of Arctic aerosol number and size distributions
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:6, s. 3665-3682
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements at high-Arctic sites (Alert, Nunavut, and Mt. Zeppelin, Svalbard) during the years 2011 to 2013 show a strong and similar annual cycle in aerosol number and size distributions. Each year at both sites, the number of aerosols with diameters larger than 20 nm exhibits a minimum in October and two maxima, one in spring associated with a dominant accumulation mode (particles 100 to 500 nm in diameter) and a second in summer associated with a dominant Aitken mode (particles 20 to 100 nm in diameter). Seasonal-mean aerosol effective diameter from measurements ranges from about 180 in summer to 260 nm in winter. This study interprets these annual cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. Important roles are documented for several processes (new-particle formation, coagulation scavenging in clouds, scavenging by precipitation, and transport) in controlling the annual cycle in Arctic aerosol number and size. Our simulations suggest that coagulation scavenging of interstitial aerosols in clouds by aerosols that have activated to form cloud droplets strongly limits the total number of particles with diameters less than 200 nm throughout the year. We find that the minimum in total particle number in October can be explained by diminishing new-particle formation within the Arctic, limited transport of pollution from lower latitudes, and efficient wet removal. Our simulations indicate that the summertime-dominant Aitken mode is associated with efficient wet removal of accumulation-mode aerosols, which limits the condensation sink for condensable vapours. This in turn promotes new-particle formation and growth. The dominant accumulation mode during spring is associated with build up of transported pollution from outside the Arctic coupled with less-efficient wet-removal processes at colder temperatures. We recommend further attention to the key processes of new-particle formation, interstitial coagulation, and wet removal and their delicate interactions and balance in size-resolved aerosol simulations of the Arctic to reduce uncertainties in estimates of aerosol radiative effects on the Arctic climate.
  •  
13.
  • Dal Maso, Miikka, et al. (författare)
  • Annual and interannual variation in boreal forest aerosol particle number and volume concentration and their connection to particle formation
  • 2008
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 60:4, s. 495-508
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated size-resolved submicrometre aerosol particle number and volume concentration time series as well as aerosol dynamic parameters derived front Differential Mobility Particle Sizer (DMPS) measurements at five background stations in the Nordic boreal forest area. The stations in question were Aspvreten, Hyytiala and Uto in Southern Finland and Sweden, and Varrio and Pallas in the Finnish Lapland. The objective Of Our investigation was to identify and quantity annual and interannual variation observable in the time series. We found that the total number and mass concentrations were touch lower at the Lapland stations than at the southern stations and that the total particle number was strongly correlated to particle formation event frequency. The annual total number concentration followed the annual distribution of particle formation events at the Southern stations but much less clearly at the Lapland stations. The volume concentration was highest during summer, in line with higher condensation growth rates: this is in line with the assumption that a large part of the particle volume is produced by oxidized plant emissions. The decrease of sulphate emissions in Europe was not visible in our data set. Aerosol dynamic parameters such as condensation sink, condensation sink diameter and the power law exponent linking coagulation losses and condensation sink are presented to characterize the submicron Nordic background aerosol.
  •  
14.
  • Dall' Osto, M., et al. (författare)
  • Arctic sea ice melt leads to atmospheric new particle formation
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.
  •  
15.
  • Dall'Osto, Manuel, et al. (författare)
  • Simultaneous measurements of aerosol size distributions at three sites in the European high Arctic
  • 2019
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:11, s. 7377-7395
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosols are an integral part of the Arctic climate system due to their direct interaction with radiation and indirect interaction through cloud formation. Understanding aerosol size distributions and their dynamics is crucial for the ability to predict these climate relevant effects. When of favourable size and composition, both long-rangetransported - and locally formed particles - may serve as cloud condensation nuclei (CCN). Small changes of composition or size may have a large impact on the low CCN concentrations currently characteristic of the Arctic environment. We present a cluster analysis of particle size distributions (PSDs; size range 8-500 nm) simultaneously collected from three high Arctic sites during a 3-year period (20132015). Two sites are located in the Svalbard archipelago: Zeppelin research station (ZEP; 474 m above ground) and the nearby Gruvebadet Observatory (GRU; about 2 km distance from Zeppelin, 67 m above ground). The third site (Villum Research Station at Station Nord, VRS; 30 m above ground) is 600 km west-northwest of Zeppelin, at the tip of northeastern Greenland. The GRU site is included in an inter-site comparison for the first time. K-means cluster analysis pro- vided eight specific aerosol categories, further combined into broad PSD classes with similar characteristics, namely pristine low concentrations (12 %-14 % occurrence), new particle formation (16 %-32 %), Aitken (21 %-35 %) and accumulation (20 %-50 %). Confined for longer time periods by consolidated pack sea ice regions, the Greenland site GRU shows PSDs with lower ultrafine-mode aerosol concentrations during summer but higher accumulation-mode aerosol concentrations during winter, relative to the Svalbard sites. By association with chemical composition and cloud condensation nuclei properties, further conclusions can be derived. Three distinct types of accumulation-mode aerosol are observed during winter months. These are associated with sea spray (largest detectable sizes, > 400 nm), Arctic haze (main mode at 150 nm) and aged accumulation-mode (main mode at 220 nm) aerosols. In contrast, locally produced particles, most likely of marine biogenic origin, exhibit size distributions dominated by the nucleation and Aitken mode during summer months. The obtained data and analysis point towards future studies, including apportioning the relative contribution of primary and secondary aerosol formation processes and elucidating anthropogenic aerosol dynamics and transport and removal processes across the Greenland Sea. In order to address important research questions in the Arctic on scales beyond a singular station or measurement events, it is imperative to continue strengthening international scientific cooperation.
  •  
16.
  •  
17.
  • Engvall, Ann-Christine, et al. (författare)
  • The radiative effect of an aged, internally mixed Arctic aerosol originating from lower-latitude biomass burning
  • 2009
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 61:4, s. 677-684
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic-haze layers and their radiative effects have been investigated previously in numerous studies as they are known to have an impact on the regional climate. In this study, we report on an event of an elevated aerosol layer, notably consisting of high-absorbing soot particles, observed in the European Arctic free troposphere the 2007 April 14 during the ASTAR 2007 campaign. The ca. 0.5 km vertically thick aerosol layer located at an altitude of around 3 km had a particle-size distribution mode around 250 nm diameter. In this study, we quantify the radiative effect aerosol layers have on the Arctic atmosphere by using in situ observations. Measurements of particles size segregated temperature stability using thermal denuders, indicate that the aerosol in the optically active size range was chemically internally mixed. In the plume, maximum observed absorption and scattering coefficients were 3 x 10(-6) and 20 x 10(-6) m(-1), respectively. Observed microphysical and optical properties were used to constrain calculations of heating rates of an internally mixed aerosol assuming two different surface albedos that represent snow/ice covered and open ocean. The average profile resulted in a heating rate in the layer of 0.2 K d(-1) for the high-albedo case and 0.15 K d(-1) for the low albedo case. This calculated dependence on albedo based on actual observations corroborates previous numerical simulations. The heating within the plume resulted in a measurable signal shown as an enhancement in the temperature of a few tenths of a degree. Although the origin of the aerosol plume could not unambiguously be determined, the microphysical properties of the aerosol had strong similarities with previously reported biomass burning plumes. With a changing climate, short-lived pollutants such as biomass plumes may become more frequent in the Arctic and have important radiative effects at regional scale.
  •  
18.
  • Evangeliou, N., et al. (författare)
  • Wildfires in northern Eurasia affect the budget of black carbon in the Arctic - a 12-year retrospective synopsis (2002-2013)
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:12, s. 7587-7604
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in northern Eurasia during the period of 2002-2013 influenced the budget of BC in the Arctic. For simulating the transport of fire emissions from northern Eurasia to the Arctic, we adopted BC fire emission estimates developed independently by GFED3 (Global Fire Emissions Database) and FEI-NE (Fire Emission Inventory - northern Eurasia). Both datasets were based on fire locations and burned areas detected by MODIS (Moderate resolution Imaging Spectroradiometer) instruments on NASA's (National Aeronautics and Space Administration) Terra and Aqua satellites. Anthropogenic sources of BC were adopted from the MACCity (Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment) emission inventory. During the 12-year period, an average area of 250aEuro-000aEuro-km(2)aEuro-yr(-1) was burned in northern Eurasia (FEI-NE) and the global emissions of BC ranged between 8.0 and 9.5aEuro-TgaEuro-yr(-1) (FEI-NE+MACCity). For the BC emitted in the Northern Hemisphere (based on FEI-NE+MACCity), about 70aEuro-% originated from anthropogenic sources and the rest from biomass burning (BB). Using the FEI-NE+MACCity inventory, we found that 102aEuro-+/- aEuro-29aEuro-ktaEuro-yr(-1) BC was deposited in the Arctic (defined here as the area north of 67A degrees aEuro-N) during the 12 years simulated, which was twice as much as when using the MACCity inventory (56aEuro-+/- aEuro-8aEuro-ktaEuro-yr(-1)). The annual mass of BC deposited in the Arctic from all sources (FEI-NE in northern Eurasia, MACCity elsewhere) is significantly higher by about 37aEuro-% in 2009 (78 vs. 57aEuro-ktaEuro-yr(-1)) to 181aEuro-% in 2012 (153 vs. 54aEuro-ktaEuro-yr(-1)), compared to the BC deposited using just the MACCity emission inventory. Deposition of BC in the Arctic from BB sources in the Northern Hemisphere thus represents 68aEuro-% of the BC deposited from all BC sources (the remaining being due to anthropogenic sources). Northern Eurasian vegetation fires (FEI-NE) contributed 85aEuro-% (79-91aEuro-%) to the BC deposited over the Arctic from all BB sources in the Northern Hemisphere. We estimate that about 46aEuro-% of the BC deposited over the Arctic from vegetation fires in northern Eurasia originated from Siberia, 6aEuro-% from Kazakhstan, 5aEuro-% from Europe, and about 1aEuro-% from Mongolia. The remaining 42aEuro-% originated from other areas in northern Eurasia. About 42aEuro-% of the BC released from northern Eurasian vegetation fires was deposited over the Arctic (annual average: 17aEuro-%) during spring and summer.
  •  
19.
  • Franke, Vera, et al. (författare)
  • Chemical composition and source analysis of carbonaceous aerosol particles at a mountaintop site in central Sweden
  • 2017
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical composition of atmospheric particulate matter at Mt. angstrom reskutan, a mountaintop site in central Sweden, was analysed with a focus on its carbonaceous content. Filter samples taken during the Cloud and Aerosol Experiment at angstrom re (CAEsAR 2014) were analysed by means of a thermo-optical method and ion chromatography. Additionally, the particle light absorption and particle number size distribution measurements for the entire campaign were added to the analysis. Mean airborne concentrations of organic and elemental carbon during CAEsAR 2014 were OC= 0.85 +/- 0.8 mu gm(-3) and EC = 0.06 +/- 0.06 mu gm(-3), respectively. Elemental to organic carbon ratios varied between EC/OC = 0.02 and 0.19. During the study a large wildfire occurred in Vastmanland, Sweden, with the plume reaching our study site. This led to significant increases in OC and EC concentrations (OC = 3.04 +/- 0.03 mu gm(-3) and EC = 0.24 +/- 0.00 mu gm(-3)). The mean mass-specific absorption coefficient observed during the campaign was sigma(BC)(abs) = 9.1 +/- 7.3 m(2)g(-1) (at wavelength lambda= 637 nm). In comparison to similarly remote European sites, Mt. angstrom reskutan experienced significantly lower carbonaceous aerosol loadings with a clear dominance of organic carbon. A mass closure study revealed a missing chemical mass fraction that likely originated from mineral dust. Potential regional source contributions of the carbonaceous aerosol were investigated using modelled air mass back trajectories. This source apportionment pointed to a correlation between high EC concentrations and air originating from continental Europe. Particles rich in organic carbon most often arrived from highly vegetated continental areas. However, marine regions were also a source of these aerosol particles. The source contributions derived during this study were compared to emission inventories of an Earth system model. This comparison highlighted a lack of OC and EC point-sources in the model's emission inventory which could potentially lead to an underestimation of the carbonaceous aerosol reaching Mt. angstrom reskutan in the simulation of this Earth system model.
  •  
20.
  • Fredricsson, Malin, et al. (författare)
  • Nationell luftövervakning Sakrapport med data från övervakning inom Programområde Luft t.o.m 2019
  • 2021
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Naturvårdsverket ansvarar för den nationella luftövervakningen i bakgrundsmiljö i Sverige. I rapporten redovisas resultat från verksamheten inom Programområde Luft avseende mätningar (genomförda av IVL, SU, SLU och SMHI) till och med 2019 och regionala modellberäkningar (utförda av SMHI) till och med 2018.För flertalet av de luftföroreningskomponenter som övervakas inom den nationella miljöövervakningen har det, sedan mätningarna startade för mellan 20 och 40 år sedan, generellt sett skett en avsevärd förbättring avseende såväl halter i luft som deposition i bakgrundsmiljö. Utvecklingen har dock varierat i något olika utsträckning beroende på komponenter och lokalisering i landet. Föroreningsbelastningen är oftast lägre ju längre norrut i landet man kommer.För de flesta ämnen som det finns miljökvalitetsnormer (MKN) respektive miljömål för ligger halterna i regional bakgrund avsevärt lägre än angivna gräns- och målvärden. Halterna av ozon överskrider dock i dagsläget (2019) MKN för hälsa.
  •  
21.
  • Freud, E., et al. (författare)
  • Anthropogenic aerosol effects on convective cloud microphysical properties in southern Sweden
  • 2008
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 60:2, s. 286-297
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we look for anthropogenic aerosol effects in southern Scandinavia's clouds under the influence of moderate levels of pollution and relatively weak dynamic forcing. This was done by comparing surface aerosol measurements with convective cloud microphysical profiles produced from satellite image analyses. The results show that the clouds associated with the anthropogenic-affected air with high PM0.5, had to acquire a vertical development of similar to 3.5 km before forming precipitation-sized particles, compared to less than 1 km for the clouds associated with low PM0.5 air-masses. Additionally, a comparison of profiles with precipitation was done with regard to different potentially important parameters. For precipitating clouds the variability of the cloud thickness needed to produce the precipitation (Delta h(14)) is directly related to PM0.5 concentrations, even without considering atmospheric stability, the specific aerosol size distribution or the aerosols' chemical composition. Each additional 1 mu g m(-3) of PM0.5 was found to increase Delta h(14) by similar to 200-250 m. Our conclusion is that it is indeed possible to detect the effects of anthropogenic aerosol on the convective clouds in southern Scandinavia despite modest aerosol masses. It also emphasizes the importance of including aerosol processes in climate-radiation models and in numerical weather prediction models.
  •  
22.
  • Freud, Eyal, et al. (författare)
  • Pan-Arctic aerosol number size distributions : seasonality and transport patterns
  • 2017
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:13, s. 8101-8128
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic environment has an amplified response to global climatic change. It is sensitive to human activities that mostly take place elsewhere. For this study, a multi-year set of observed aerosol number size distributions in the diameter range of 10 to 500 nm from five sites around the Arctic Ocean (Alert, Villum Research Station - Station Nord, Zeppelin, Tiksi and Barrow) was assembled and analysed. A cluster analysis of the aerosol number size distributions revealed four distinct distributions. Together with Lagrangian air parcel back-trajectories, they were used to link the observed aerosol number size distributions with a variety of transport regimes. This analysis yields insight into aerosol dynamics, transport and removal processes, on both an intra- and an inter-monthly scale. For instance, the relative occurrence of aerosol number size distributions that indicate new particle formation (NPF) event is near zero during the dark months, increases gradually to similar to 40% from spring to summer, and then collapses in autumn. Also, the likelihood of Arctic haze aerosols is minimal in summer and peaks in April at all sites. The residence time of accumulation-mode particles in the Arctic troposphere is typically long enough to allow tracking them back to their source regions. Air flow that passes at low altitude over central Siberia and western Russia is associated with relatively high concentrations of accumulation-mode particles (N-acc) at all five sites - often above 150 cm(-3). There are also indications of air descending into the Arctic boundary layer after transport from lower latitudes. The analysis of the back-trajectories together with the meteorological fields along them indicates that the main driver of the Arctic annual cycle of N-acc, on the larger scale, is when atmospheric transport covers the source regions for these particles in the 10-day period preceding the observations in the Arctic. The scavenging of these particles by precipitation is shown to be important on a regional scale and it is most active in summer. Cloud processing is an additional factor that enhances the N-acc annual cycle. There are some consistent differences between the sites that are beyond the year-to-year variability. They are the result of differences in the proximity to the aerosol source regions and to the Arctic Ocean sea-ice edge, as well as in the exposure to free-tropospheric air and in precipitation patterns - to mention a few. Hence, for most purposes, aerosol observations from a single Arctic site cannot represent the entire Arctic region. Therefore, the results presented here are a powerful observational benchmark for evaluation of detailed climate and air chemistry modelling studies of aerosols throughout the vast Arctic region.
  •  
23.
  • Giamarelou, Maria, et al. (författare)
  • Indirect evidence of the composition of nucleation mode atmospheric particles in the high Arctic
  • 2016
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 121:2, s. 965-975
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous long-term observations have shown that nanoparticle formation events are common in the summer-time high Arctic and linked to local photochemical activity. However, current knowledge is limited with respect to the chemical precursors of resulting nanoparticles and the compounds involved in their subsequent growth. Here we report case-study measurements during new particle formation (NPF) events of the particle size distribution (diameter>7nm) and for the first time the volatility of monodisperse particles having diameter 40nm, providing indirect information about their composition. Volatility measurements provide indirect evidence that a predominant fraction of the 12nm particle population is ammoniated sulfates in the summertime high Arctic. Our observations further suggest that the majority of the sub-40nm particle population during NPF events does not exist in the form of sulfuric acid but rather as partly or fully neutralized ammoniated sulfates.
  •  
24.
  • Grythe, Henrik, 1980-, et al. (författare)
  • A new aerosol wet removal scheme for the Lagrangian particle model FLEXPART
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:4, s. 1447-1466
  • Tidskriftsartikel (refereegranskat)abstract
    • A new and more physically based treatment of how removal by precipitation is calculated by FLEXPART is introduced, to take into account more aspects of aerosol diversity. Also new, is the definition of clouds and cloud properties. Results from simulations show good agreement with observed atmospheric concentrations for distinctly different aerosols. Atmospheric lifetimes were found to vary from a few hours (large aerosol particles) up to a month (small non-soluble).
  •  
25.
  • Hamburger, Thomas, et al. (författare)
  • Long-term in situ observations of biomass burning aerosol at a high altitude station in Venezuela - sources, impacts and interannual variability
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:19, s. 9837-9853
  • Tidskriftsartikel (refereegranskat)abstract
    • First long-term observations of South American biomass burning aerosol within the tropical lower free troposphere are presented. The observations were conducted between 2007 and 2009 at a high altitude station (4765 m a.s.l.) on the Pico Espejo, Venezuela. Sub-micron particle volume, number concentrations of primary particles and particle absorption were observed. Orographic lifting and shallow convection leads to a distinct diurnal cycle at the station. It enables measurements within the lower free troposphere during night-time and observations of boundary layer air masses during daytime and at their transitional regions. The seasonal cycle is defined by a wet rainy season and a dry biomass burning season. The particle load of biomass burning aerosol is dominated by fires in the Venezuelan savannah. Increases of aerosol concentrations could not be linked to long-range transport of biomass burning plumes from the Amazon basin or Africa due to effective wet scavenging of particles. Highest particle concentrations were observed within boundary layer air masses during the dry season. Ambient sub-micron particle volume reached 1.4 +/- 1.3 mu m(3) cm(-3), refractory particle number concentrations (at 300 degrees C) 510+/-420 cm(-3) and the absorption coefficient 0.91+/-1.2 Mm(-1). The respective concentrations were lowest within the lower free troposphere during the wet season and averaged at 0.19+/-0.25 mu m(3) cm-3, 150+/-94 cm(-3) and 0.15+/-0.26 Mm(-1). A decrease of particle concentrations during the dry seasons from 2007-2009 could be connected to a decrease in fire activity in the wider region of Venezuela using MODIS satellite observations. The variability of biomass burning is most likely linked to the El Nino-Southern Oscillation (ENSO). Low biomass burning activity in the Venezuelan savannah was observed to follow La Nina conditions, high biomass burning activity followed El Nino conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 91
Typ av publikation
tidskriftsartikel (78)
annan publikation (5)
forskningsöversikt (3)
konferensbidrag (2)
doktorsavhandling (2)
rapport (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (82)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Tunved, Peter (87)
Krejci, Radovan (33)
Ström, Johan (31)
Hansson, Hans-Christ ... (21)
Kulmala, Markku (16)
Swietlicki, Erik (14)
visa fler...
Zieger, Paul (11)
Kulmala, M (7)
Wiedensohler, A. (6)
Riipinen, Ilona (5)
Svenningsson, Birgit ... (5)
Kristensson, Adam (5)
Artaxo, Paulo (5)
Baltensperger, U. (5)
Wiedensohler, Alfred (5)
Kerminen, Veli-Matti (5)
Srivastava, A. K. (4)
Ekman, Annica (4)
Massling, Andreas (4)
Baltensperger, Urs (4)
Harrison, Roy M. (4)
Weingartner, E. (4)
Lihavainen, H. (4)
Aalto, P. P. (4)
Laj, P. (4)
Sellegri, K. (4)
Putaud, J. P. (3)
Kiss, G (3)
Marinoni, A (3)
Tesche, Matthias (3)
Birmili, W. (3)
Skov, Henrik (3)
Laj, Paolo (3)
Asmi, A. (3)
Roldin, Pontus (3)
Nilsson, Douglas (3)
Yoon, Y. J. (3)
Ritter, C. (3)
Sellegri, Karine (3)
Coe, H. (3)
Petaja, Tuukka (3)
Heintzenberg, Jost (3)
Petäjä, Tuukka (3)
Rizzo, Luciana (3)
Virkkula, Aki (3)
Jefferson, A. (3)
Jennings, S. G. (3)
Flentje, H. (3)
Fjaeraa, A. M. (3)
Zdimal, V. (3)
visa färre...
Lärosäte
Stockholms universitet (88)
Lunds universitet (16)
Chalmers tekniska högskola (2)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
Umeå universitet (1)
visa fler...
Uppsala universitet (1)
Linköpings universitet (1)
Naturvårdsverket (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (87)
Odefinierat språk (3)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (84)
Teknik (1)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy