SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Turkez Hasan) "

Sökning: WFRF:(Turkez Hasan)

  • Resultat 1-25 av 57
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abad, Nadeem, et al. (författare)
  • Unveiling structural features, chemical reactivity, and bioactivity of a newly synthesized purine derivative through crystallography and computational approaches
  • 2024
  • Ingår i: Journal of Molecular Structure. - : Elsevier BV. - 0022-2860 .- 1872-8014. ; 1311
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce the synthesis and characterization of a novel purine derivative, 2-amino-6‑chloro-N,N-diphenyl-7H-purine-7-carboxamide. X-ray crystallography was utilized to elucidate its molecular and crystal structure. A comprehensive crystal packing analysis uncovered a network of diverse intermolecular interactions, including classical and unconventional hydrogen bonding. Remarkably, a unique halogen···π (C—Cl···π(ring)) interaction was identified and theoretically analyzed within a multi-approach quantum mechanics (QM) framework, revealing its lone-pair⋯π (n→π*) nature. Furthermore, insights into the electronic and chemical reactivity properties are provided by means of Conceptual Density Functional Theory (CDFT) at wB97X-D/aug-cc-pVTZ level. The compound's drug-likeness, pharmacokinetics, and toxicology profiles are assessed using ADMETlab 2.0. Finally, molecular docking simulations were conducted to evaluate its bioactivity as a potential cyclooxygenase-2 (COX-2) inhibitor. This study significantly advances our understanding of purine structure and reactivity, offering valuable insights for the development of targeted purine-based COX-2 inhibitors and anticancer therapeutics.
  •  
2.
  • Akbaba, Yusuf, et al. (författare)
  • Novel tetrahydronaphthalen-1-yl-phenethyl ureas : synthesis and dual antibacterial-anticancer activities
  • 2024
  • Ingår i: Journal of enzyme inhibition and medicinal chemistry (Print). - : Informa UK Limited. - 1475-6366 .- 1475-6374. ; 39:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer and antibiotic-resistant bacterial infections are significant global health challenges. The resistance developed in cancer treatments intensifies therapeutic difficulties. In addressing these challenges, this study synthesised a series of N,N '-dialkyl urea derivatives containing methoxy substituents on phenethylamines. Using isocyanate for the efficient synthesis yielded target products 14-18 in 73-76% returns. Subsequently, their antibacterial and anticancer potentials were assessed. Cytotoxicity tests on cancer cell lines, bacterial strains, and a healthy fibroblast line revealed promising outcomes. All derivatives demonstrated robust antibacterial activity, with MIC values ranging from 0.97 to 15.82 mu M. Notably, compounds 14 and 16 were particularly effective against the HeLa cell line, while compounds 14, 15, and 17 showed significant activity against the SH-SY5Y cell line. Importantly, these compounds had reduced toxicity to healthy fibroblast cells than to cancer cells, suggesting their potential as dual-functioning agents targeting both cancer and bacterial infections.
  •  
3.
  • Akbas, Esvet, et al. (författare)
  • Synthesis and Biological Evaluation of Novel Benzylidene Thiazolo Pyrimidin-3(5H)-One Derivatives
  • 2024
  • Ingår i: Polycyclic aromatic compounds (Print). - : Informa UK Limited. - 1040-6638 .- 1563-5333. ; 44:5, s. 3061-3078
  • Tidskriftsartikel (refereegranskat)abstract
    • Starting compound 1 was synthesized according to reference. 1 Benzylidene thiazole pyrimidin-3(5H)-ones were synthesized reactions of 1 with bromoacetic acid and various aryl-aldehydes in the same vessel via one-step, unlike studies in the literature. Quantum chemical parameters and full geometry optimizations for all compounds were computed using DFT based on B3LYP. Cytotoxic action potential of synthesized compounds was evaluated using trypan blue dye exclusion and MTT assays in different cell lines including adenocarcinoma alveolar basal epithelial-like adherent A549 cells, the colon adenocarcinoma HT-29 cells, prostate adenocarcinoma DU-145 cells, and diploid ARPE-19 retinal pigment epithelial cells. Embryotoxicity and genotoxicity assessments were performed on pluripotent human embryonal carcinoma NT2 and human lymphocyte cells, respectively. Compound A1 exhibited good anticancer activity on A549 and DU-145 cell lines, and the compounds including A3, 4, 6, and 9 induced cytotoxicity on A549 cells. The compounds A1-10 also showed a good biosafety profile at relatively lower concentrations.
  •  
4.
  • Akbas, Esvet, et al. (författare)
  • Synthesis, Characterization, Theoretical Studies and in Vitro Embriyotoxic, Genotoxic and Anticancer Effects of Novel Phenyl(1,4,6-Triphenyl-2-Thioxo-1,2,3,4-Tetrahydropyrimidin-5-yl)Methanone
  • 2023
  • Ingår i: Polycyclic aromatic compounds (Print). - : Informa UK Limited. - 1040-6638 .- 1563-5333. ; , s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, phenyl (1,4,6-triphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methanone was obtained by using the Biginelli reaction method. The structure of this compound was analyzed using elemental analysis, IR, 1H, and 13C NMR. The quantum chemical calculations (QCC) of this compound were performed density functional theory (DFT) method, 6–31 G (d, p) base set, and B3LYP functions with the Gaussian09W software package. Literature shows that pyrimidine-derived compounds have very active biological properties. For this reason, the biologically active properties of the synthesized compound were also examined. To determine embryotoxic, genotoxic, and cytotoxic effects of compound, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, micronucleus (MN) and 8-OH-dG assays were carried out. On the other hand, pharmacokinetic and toxicity properties (ADMET) were predicted in silico via SwissADME and Protox-II web tools. In silico estimates of this compound used in the study showed that the compound has the covetable physicochemical properties for bioavailability. In conclusion, the obtained results of our study clearly showed that this compound exerted strong toxicity potential.
  •  
5.
  • Alkurt, Gizem, et al. (författare)
  • Seroprevalence of coronavirus disease 2019 (COVID-19) among health care workers from three pandemic hospitals of Turkey
  • 2021
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is a global threat with an increasing number of infections. Research on IgG seroprevalence among health care workers (HCWs) is needed to re-evaluate health policies. This study was performed in three pandemic hospitals in Istanbul and Kocaeli. Different clusters of HCWs were screened for SARS-CoV-2 infection. Seropositivity rate among participants was evaluated by chemiluminescent microparticle immunoassay. We recruited 813 non-infected and 119 PCR-confirmed infected HCWs. Of the previously undiagnosed HCWs, 22 (2.7%) were seropositive. Seropositivity rates were highest for cleaning staff (6%), physicians (4%), nurses (2.2%) and radiology technicians (1%). Non-pandemic clinic (6.4%) and ICU (4.3%) had the highest prevalence. HCWs in "high risk" group had similar seropositivity rate with "no risk" group (2.9 vs 3.5 p = 0.7). These findings might lead to the re-evaluation of infection control and transmission dynamics in hospitals.
  •  
6.
  • Altay, Özlem, et al. (författare)
  • Combined Metabolic Activators with Different NAD+ Precursors Improve Metabolic Functions in the Animal Models of Neurodegenerative Diseases
  • 2024
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mitochondrial dysfunction and metabolic abnormalities are acknowledged as significant factors in the onset of neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). Our research has demonstrated that the use of combined metabolic activators (CMA) may alleviate metabolic dysfunctions and stimulate mitochondrial metabolism. Therefore, the use of CMA could potentially be an effective therapeutic strategy to slow down or halt the progression of PD and AD. CMAs include substances such as the glutathione precursors (L-serine and N-acetyl cysteine), the NAD+ precursor (nicotinamide riboside), and L-carnitine tartrate. Methods: Here, we tested the effect of two different formulations, including CMA1 (nicotinamide riboside, L-serine, N-acetyl cysteine, L-carnitine tartrate), and CMA2 (nicotinamide, L-serine, N-acetyl cysteine, L-carnitine tartrate), as well as their individual components, on the animal models of AD and PD. We assessed the brain and liver tissues for pathological changes and immunohistochemical markers. Additionally, in the case of PD, we performed behavioral tests and measured responses to apomorphine-induced rotations. Findings: Histological analysis showed that the administration of both CMA1 and CMA2 formulations led to improvements in hyperemia, degeneration, and necrosis in neurons for both AD and PD models. Moreover, the administration of CMA2 showed a superior effect compared to CMA1. This was further corroborated by immunohistochemical data, which indicated a reduction in immunoreactivity in the neurons. Additionally, notable metabolic enhancements in liver tissues were observed using both formulations. In PD rat models, the administration of both formulations positively influenced the behavioral functions of the animals. Interpretation: Our findings suggest that the administration of both CMA1 and CMA2 markedly enhanced metabolic and behavioral outcomes, aligning with neuro-histological observations. These findings underscore the promise of CMA2 administration as an effective therapeutic strategy for enhancing metabolic parameters and cognitive function in AD and PD patients.
  •  
7.
  • Altay, Özlem, et al. (författare)
  • Revealing the Metabolic Alterations during Biofilm Development of Burkholderia cenocepacia Based on Genome-Scale Metabolic Modeling
  • 2021
  • Ingår i: Metabolites. - : MDPI AG. - 2218-1989 .- 2218-1989. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Burkholderia cenocepacia is among the important pathogens isolated from cystic fibrosis (CF) patients. It has attracted considerable attention because of its capacity to evade host immune defenses during chronic infection. Advances in systems biology methodologies have led to the emergence of methods that integrate experimental transcriptomics data and genome-scale metabolic models (GEMs). Here, we integrated transcriptomics data of bacterial cells grown on exponential and biofilm conditions into a manually curated GEM of B. cenocepacia. We observed substantial differences in pathway response to different growth conditions and alternative pathway susceptibility to extracellular nutrient availability. For instance, we found that blockage of the reactions was vital through the lipid biosynthesis pathways in the exponential phase and the absence of microenvironmental lysine and tryptophan are essential for survival. During biofilm development, bacteria mostly had conserved lipid metabolism but altered pathway activities associated with several amino acids and pentose phosphate pathways. Furthermore, conversion of serine to pyruvate and 2,5-dioxopentanoate synthesis are also identified as potential targets for metabolic remodeling during biofilm development. Altogether, our integrative systems biology analysis revealed the interactions between the bacteria and its microenvironment and enabled the discovery of antimicrobial targets for biofilm-related diseases.
  •  
8.
  • Arif, Muhammad, et al. (författare)
  • INetModels 2.0: An interactive visualization and database of multi-omics data
  • 2021
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 49:W1, s. W271-W276
  • Tidskriftsartikel (refereegranskat)abstract
    • It is essential to reveal the associations between various omics data for a comprehensive understanding of the altered biological process in human wellness and disease. To date, very few studies have focused on collecting and exhibiting multi-omics associations in a single database. Here, we present iNetModels, an interactive database and visualization platform of Multi-Omics Biological Networks (MOBNs). This platform describes the associations between the clinical chemistry, anthropometric parameters, plasma proteomics, plasma metabolomics, as well as metagenomics for oral and gut microbiome obtained from the same individuals. Moreover, iNetModels includes tissue- and cancer-specific Gene Co-expression Networks (GCNs) for exploring the connections between the specific genes. This platform allows the user to interactively explore a single feature's association with other omics data and customize its particular context (e.g. male/female specific). The users can also register their data for sharing and visualization of the MOBNs and GCNs. Moreover, iNetModels allows users who do not have a bioinformatics background to facilitate human wellness and disease research. iNetModels can be accessed freely at https://inetmodels.com without any limitation.
  •  
9.
  • Arslan, Mehmet Enes, et al. (författare)
  • Costunolide and Parthenolide Ameliorate MPP plus Induced Apoptosis in the Cellular Parkinson's Disease Model
  • 2023
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Monoamine oxidase B (MAO-B) is an enzyme that metabolizes several chemicals, including dopamine. MAO-B inhibitors are used in the treatment of Parkinson's Disease (PD), and the inhibition of this enzyme reduces dopamine turnover and oxidative stress. The absence of dopamine results in PD pathogenesis originating from decreased Acetylcholinesterase (AChE) activity and elevated oxidative stress. Here, we performed a molecular docking analysis for the potential use of costunolide and parthenolide terpenoids as potential MAO-B inhibitors in the treatment of PD. Neuroprotective properties of plant-originated costunolide and parthenolide terpenoids were investigated in a cellular PD model that was developed by using MPP+ toxicity. We investigated neuroprotection mechanisms through the analysis of oxidative stress parameters, acetylcholinesterase activity and apoptotic cell death ratios. Our results showed that 100 mu g/mL and 50 mu g/mL of costunolide, and 50 mu g/mL of parthenolide applied to the cellular disease model ameliorated the cytotoxicity caused by MPP+ exposure. We found that acetylcholinesterase activity assays exhibited that terpenoids could ameliorate and restore the enzyme activity as in negative control levels. The oxidative stress parameter analyses revealed that terpenoid application could enhance antioxidant levels and decrease oxidative stress in the cultures. In conclusion, we reported that these two terpenoid molecules could be used in the development of efficient treatment strategies for PD patients.
  •  
10.
  • Arslan, Mehmet Enes, et al. (författare)
  • In Vitro Transcriptome Analysis of Cobalt Boride Nanoparticles on Human Pulmonary Alveolar Cells
  • 2022
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 15:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanobiotechnology influences many different areas, including the medical, food, energy, clothing, and cosmetics industries. Considering the wide usage of nanomaterials, it is necessary to investigate the toxicity potentials of specific nanosized molecules. Boron-containing nanoparticles (NPs) are attracting much interest from scientists due to their unique physicochemical properties. However, there is limited information concerning the toxicity of boron-containing NPs, including cobalt boride (Co2B) NPs. Therefore, in this study, Co2B NPs were characterized using X-ray crystallography (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) techniques. Then, we performed 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, and neutral red (NR) assays for assessing cell viability against Co2B NP exposure on cultured human pulmonary alveolar epithelial cells (HPAEpiC). In addition, whole-genome microarray analysis was carried out to reveal the global gene expression differentiation of HPAEpiC cells after Co2B NP application. The cell viability tests unveiled an IC50 value for Co2B NPs of 310.353 mg/L. The results of our microarray analysis displayed 719 gene expression differentiations (FC >= 2) among the analyzed 40,000 genes. The performed visualization and integrated discovery (DAVID) analysis revealed that there were interactions between various gene pathways and administration of the NPs. Based on gene ontology biological processes analysis, we found that the P53 signaling pathway, cell cycle, and cancer-affecting genes were mostly affected by the Co2B NPs. In conclusion, we suggested that Co2B NPs would be a safe and effective nanomolecule for industrial applications, particularly for medical purposes.
  •  
11.
  • Ashraf, Sajda, et al. (författare)
  • Synthesis, spectroscopic characterization, DFT and molecular docking of N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl) naphthalene-1-sulfonamide derivatives
  • 2024
  • Ingår i: Journal of Molecular Structure. - : Elsevier B.V.. - 0022-2860 .- 1872-8014. ; 1312
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver pyruvate kinase (PKL) is a key player in controlling metabolic pathways and ATP production within the liver's glycolysis pathway. Since PKL modulators have been identified as a promising target for treating hepatocellular carcinoma (HCC) and non-alcoholic fatty liver disease (NAFLD), our research is centered on the development and synthesis of derivatives of N-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl) naphthalene-1-sulfonamide with the aim of modulating PLK. To improve PKL specificity, we used structural analysis and modeling as a guide. Notably, compound PKL-05 became the series' only active ingredient. DFT, Hirshfeld surface analysis, and molecular docking were used in our study to thoroughly examine the connection between compound structures and their computational functions. The global hardness and softness energy values, as well as the HOMO-LUMO energy gap value, were computed in order to forecast the chemical reactivity of this newly synthesized molecule. These energy values indicate that this molecule tends to be chemically stable and has little chemical reactivity. The results demonstrated a strong agreement between theoretical forecasts and experimental findings. In particular, PKL-05 exhibits encouraging traits that establish it as a useful starting point for additional research in the search for innovative PKL modulators to tackle the treatment issues associated with NAFLD and HCC.
  •  
12.
  • Aydin, Nursah, et al. (författare)
  • Ameliorative Effects by Hexagonal Boron Nitride Nanoparticles against Beta Amyloid Induced Neurotoxicity
  • 2022
  • Ingår i: Nanomaterials. - : MDPI AG. - 2079-4991. ; 12:15, s. 2690-
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is considered as the most common neurodegenerative disease. Extracellular amyloid beta (A beta) deposition is a hallmark of AD. The options based on degradation and clearance of A beta are preferred as promising therapeutic strategies for AD. Interestingly, recent findings indicate that boron nanoparticles not only act as a carrier but also play key roles in mediating biological effects. In the present study, the aim was to investigate the effects of different concentrations (0-500 mg/L) of hexagonal boron nitride nanoparticles (hBN-NPs) against neurotoxicity by beta amyloid (A beta(1-42)) in differentiated human SH-SY5Y neuroblastoma cell cultures for the first time. The synthesized hBN-NPs were characterized by X-ray diffraction (XRD) measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A beta(1-42)-induced neurotoxicity and therapeutic potential by hBN-NPs were assessed on differentiated SH-SY5Y cells using MTT and LDH release assays. Levels of total antioxidant capacity (TAC) and total oxidant status (TOS), expression levels of genes associated with AD and cellular morphologies were examined. The exposure to A beta(1-42) significantly decreased the rates of viable cells which was accompanied by elevated TOS level. A beta(1-42) induced both apoptotic and necrotic cell death. A beta exposure led to significant increases in expression levels of APOE, BACE 1, EGFR, NCTSN and TNF-alpha genes and significant decreases in expression levels of ADAM 10, APH1A, BDNF, PSEN1 and PSENEN genes (p < 0.05). All the A beta(1-42)-induced neurotoxic insults were inhibited by the applications with hBN-NPs. hBN-NPs also suppressed the remarkable elevation in the signal for A beta following exposure to A beta(1-42) for 48 h. Our results indicated that hBN-NPs could significantly prevent the neurotoxic damages by A beta. Thus, hBN-NPs could be a novel and promising anti-AD agent for effective drug development, bio-nano imaging or drug delivery strategies.
  •  
13.
  • Basak, Togar, et al. (författare)
  • Synthesis and in Vitro Toxicity Assessment of Different Nano-Calcium Phosphate Nanoparticles
  • 2022
  • Ingår i: Brazilian archives of biology and technology. - : FapUNIFESP (SciELO). - 1516-8913 .- 1678-4324. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoscale biomaterials are commonly used in a wide range of biomedical applications such as bone graft substitutes, gene delivery systems, and biologically active agents. On the other hand, the cytotoxic potential of these particles hasn't yet been studied comprehensively to understand whether or not they exert any negative impact on the cellular structures. Here, we undertook the synthesis of beta-tricalcium phosphate (beta-TCP) and biphasic tricalcium phosphate (BCP) nanoparticles (NPs) and determine their concentration-dependent toxic effects in human fetal osteoblastic (hFOB 1.19) cell line. Firstly, BCP and beta-TCP were synthesized using a water-based precipitation technique and characterized by X-Ray Diffraction (XRD), Raman Spectroscopy, and Transmission Electron Microscopy (TEM). The cytological effects of beta-TCP and BCP at different concentrations (0-640 ppm) were evaluated by using 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The total oxidative status (TOS) parameter was used for investigating oxidative stress potentials of the NPs. In addition, the study assessed the DNA damage product 8-hydroxy-2'-deoxyguanosine (8-Oxo-dG) level in hFOB 1.19 cell cultures. The results indicated that the beta-TCP (above 320 ppm) and BCP (above 80 ppm) NPs exhibited cytotoxicity effects on high concentrations. It was also observed that the oxidative stress increased relatively as the concentrations of NPs increased, aligning with the cytotoxicity results. However, the NPs concentrations of 160 ppm and above increased the level of 8-OH-dG. Consequently, there is a need for more systematic in vivo and in vitro approaches to the toxic effects of both nanoparticles.
  •  
14.
  • Bayraktar, Abdulahad, et al. (författare)
  • Drug repositioning targeting glutaminase reveals drug candidates for the treatment of Alzheimer's disease patients
  • 2023
  • Ingår i: Journal of Translational Medicine. - : BMC. - 1479-5876. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDespite numerous clinical trials and decades of endeavour, there is still no effective cure for Alzheimer's disease. Computational drug repositioning approaches may be employed for the development of new treatment strategies for Alzheimer's patients since an extensive amount of omics data has been generated during pre-clinical and clinical studies. However, targeting the most critical pathophysiological mechanisms and determining drugs with proper pharmacodynamics and good efficacy are equally crucial in drug repurposing and often imbalanced in Alzheimer's studies.MethodsHere, we investigated central co-expressed genes upregulated in Alzheimer's disease to determine a proper therapeutic target. We backed our reasoning by checking the target gene's estimated non-essentiality for survival in multiple human tissues. We screened transcriptome profiles of various human cell lines perturbed by drug induction (for 6798 compounds) and gene knockout using data available in the Connectivity Map database. Then, we applied a profile-based drug repositioning approach to discover drugs targeting the target gene based on the correlations between these transcriptome profiles. We evaluated the bioavailability, functional enrichment profiles and drug-protein interactions of these repurposed agents and evidenced their cellular viability and efficacy in glial cell culture by experimental assays and Western blotting. Finally, we evaluated their pharmacokinetics to anticipate to which degree their efficacy can be improved.ResultsWe identified glutaminase as a promising drug target. Glutaminase overexpression may fuel the glutamate excitotoxicity in neurons, leading to mitochondrial dysfunction and other neurodegeneration hallmark processes. The computational drug repurposing revealed eight drugs: mitoxantrone, bortezomib, parbendazole, crizotinib, withaferin-a, SA-25547 and two unstudied compounds. We demonstrated that the proposed drugs could effectively suppress glutaminase and reduce glutamate production in the diseased brain through multiple neurodegeneration-associated mechanisms, including cytoskeleton and proteostasis. We also estimated the human blood-brain barrier permeability of parbendazole and SA-25547 using the SwissADME tool.ConclusionsThis study method effectively identified an Alzheimer's disease marker and compounds targeting the marker and interconnected biological processes by use of multiple computational approaches. Our results highlight the importance of synaptic glutamate signalling in Alzheimer's disease progression. We suggest repurposable drugs (like parbendazole) with well-evidenced activities that we linked to glutamate synthesis hereby and novel molecules (SA-25547) with estimated mechanisms for the treatment of Alzheimer's patients.
  •  
15.
  • Bayraktar, Abdulahad, et al. (författare)
  • Revealing the Molecular Mechanisms of Alzheimer's Disease Based on Network Analysis
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:21
  • Tidskriftsartikel (refereegranskat)abstract
    • The complex pathology of Alzheimer's disease (AD) emphasises the need for comprehensive modelling of the disease, which may lead to the development of efficient treatment strategies. To address this challenge, we analysed transcriptome data of post-mortem human brain samples of healthy elders and individuals with late-onset AD from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP) and Mayo Clinic (MayoRNAseq) studies in the AMP-AD consortium. In this context, we conducted several bioinformatics and systems medicine analyses including the construction of AD-specific co-expression networks and genome-scale metabolic modelling of the brain in AD patients to identify key genes, metabolites and pathways involved in the progression of AD. We identified AMIGO1 and GRPRASP2 as examples of commonly altered marker genes in AD patients. Moreover, we found alterations in energy metabolism, represented by reduced oxidative phosphorylation and ATPase activity, as well as the depletion of hexanoyl-CoA, pentanoyl-CoA, (2E)-hexenoyl-CoA and numerous other unsaturated fatty acids in the brain. We also observed that neuroprotective metabolites (e.g., vitamins, retinoids and unsaturated fatty acids) tend to be depleted in the AD brain, while neurotoxic metabolites (e.g., beta-alanine, bilirubin) were more abundant. In summary, we systematically revealed the key genes and pathways related to the progression of AD, gained insight into the crucial mechanisms of AD and identified some possible targets that could be used in the treatment of AD.
  •  
16.
  • Bouzian, Younos, et al. (författare)
  • Design and evaluation of novel inhibitors for the treatment of clear cell renal cell carcinoma
  • 2024
  • Ingår i: Bioorganic chemistry. - : Elsevier BV. - 0045-2068. ; 151
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficacy of conventional chemotherapies in treating clear cell renal cell carcinoma (ccRCC) is often limited due to its high molecular diversity, generally low response rates to standard treatments, and prevalent drug resistance. Recent advancements in the molecular understanding of ccRCC, alongside the discovery of novel therapeutic agents targeting specific proteins, have significantly altered the treatment landscape for ccRCC. Here, we synthesized 27 new compounds that are derivatives of TG-101209 to modulate BUB1B (BUB1 mitotic checkpoint serine/threonine kinase B). BUB1B has been recently identified as a drug target for the development of effective ccRCC treatment based on global transcriptomics profiling of ccRCC tumours and gene co-expression network analysis. We characterized the molecular structures of these 27 compounds by 1H and 13C NMR and Mass spectrometry. We evaluated the effect of these 27 compounds by analysing the modulation of the BUB1B expression. Our primary objective was to design and assess the efficacy of these new compounds in reducing the viability of Caki-1 cells, a ccRCC cell line. We performed the computational docking studies by the Schrödinger Maestro software and demonstrated that three of these compounds (13a, 5i, and 5j) effectively downregulated BUB1B expression and eventually triggered necrosis and apoptosis in the Caki-1 cell line based on the structure–activity relationship (SAR) analysis. The IC50 values for compounds 13a, 5i, and 5j were calculated as 2.047 µM, 10.046 µM, and 6.985 µM, respectively, indicating their potent inhibitory effects on cell viability. Our study suggests that these compounds targeting BUB1B could offer a more effective and promising approach for ccRCC treatment compared to the conventionally used tyrosine kinase inhibitors. Our study underscores the potential of leveraging targeted therapies against specific molecular pathways in ccRCC may open new avenues for the development of effective treatment strategies against ccRCC.
  •  
17.
  • Cadirci, Kenan, et al. (författare)
  • In Vitro Cytotoxic, Genotoxic, Embryotoxic and Oxidative Damage Potentials by Empagliflozin
  • 2024
  • Ingår i: Biology Bulletin of the Russian Academy of Science. - : Pleiades Publishing Ltd. - 1062-3590 .- 1608-3059. ; 51:2, s. 243-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Empagliflozin (EMPA) is a potent, competitive and selective sodium glucose cotransporter-2 (SGLT-2) inhibitor that ameliorates blood glucose with the insulin-independent manner. EMPA reduces weight and blood pressure of patients with type 2 diabetes mellitus (T2DM) without developing hypoglycemic risk. To the best of our knowledge, its safety profiling has not been evaluated on human blood cell cultures yet. Again, the embryotoxicity potential by EMPA is still unclear. Therefore, in this investigation we aimed to evaluate the in vitro cytotoxic, genotoxic and embryotoxic damage potential as well as antioxidative/oxidative effects by EMPA in cultured human blood and human pluripotent embryonal carcinoma NT2 cells for the first time. Cell cultures (n = 5) were exposed to different concentrations ranging from 3.25 to 100 mg/L of EMPA for 48 and 72 h. Cell viability was measured by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays. The alterations in antioxidant/oxidant activity were monitored via measuring the total antioxidant capacity (TAC) and total oxidative stress (TOS) levels. For evaluating the genotoxicity of EMPA chromosomal aberration (CA) assay was performed. The present results revealed that EMPA did not induce cytotoxic or genotoxic damage on healthy human blood cells. Moreover, EMPA exerted non-embryotoxic property and supported antioxidative capacity and decreased the oxidative stress in cultured human blood cells. Our results supported the safe and advantageous use of EMPA for the treatment of T2DM.
  •  
18.
  • Cadirci, Kenan, et al. (författare)
  • The in vitro cytotoxic, genotoxic, and oxidative damage potentials of the oral artificial sweetener aspartame on cultured human blood cells
  • 2020
  • Ingår i: Turkish Journal of Medical Sciences. - : Turkiye Klinikleri. - 1300-0144 .- 1303-6165. ; 50:2, s. 448-454
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/aim: Aspartame (APM, L-aspartyl-L-phenylalanine methylester) is a low-calorie, nonsaccharide artificial sweetener widely used in foods and beverages. When metabolized by the body, APM is broken down into aspartic acid, phenylalanine amino acids, and a third substance, methanol. Since the amino acid phenylalanine serves as a neurotransmitter building block affecting the brain, and methanol is converted into toxic formaldehyde, APM has deleterious effects on the body and brain. Thus, its safety and, toxicity have been the subjects of concern ever since it was first discovered. Although many studies have been performed on it, due to the presence of conflicting data in the literature, there are still numerous question marks concerning APM. Therefore, the safety of aspartame was tested using in vitro methods. Materials and methods: We aimed to evaluate the in vitro cytotoxic effects by using 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase release tests, genotoxic damage potential by using chromosome aberration (CA) assay, and antioxidant/oxidant activity by using total antioxidant capacity (TAC) and total oxidative stress (TOS) analysis in primary human whole blood cell cultures. Results: The results of the MTT test showed that APM led to significant decreases in cell viability in a clear concentration-dependent manner. Moreover, an increase in CA frequency was found in the cells treated with APM. However, APM treatments did not cause any significant changes in TAC and TOS levels in whole blood cultures. Conclusion: Overall, the obtained results showed that APM had genotoxicity potential and a concentration-dependent cytotoxic activity in human blood cells.
  •  
19.
  • Cinici, Emine, et al. (författare)
  • Targeted Gene Candidates for Treatment and Early Diagnosis of Age-Related Macular Degeneration
  • 2021
  • Ingår i: BioMed Research International. - : Hindawi Limited. - 2314-6133 .- 2314-6141. ; 2021
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related macular degeneration (AMD) is an eye disease that impairs the sharp and central vision need for daily activities. Recent advances in molecular biology research not only lead to a better understanding of the genetics and pathophysiology of AMD but also to the development of applications based on targeted gene expressions to treat the disease. Clarification of molecular pathways that causing to development and progression in dry and wet types of AMD needs comprehensive and comparative investigations in particular precious biopsies involving peripheral blood samples from the patients. Therefore, in this investigation, dry and wet types of AMD patients and healthy individuals were aimed at investigating in regard to targeted gene candidates by using gene expression analysis for the first time. 13 most potent candidate genes involved in neurodegeneration were selected via in silico approach and investigated through gene expression analysis to suggest new targets for disease therapy. For the analyses, 30 individuals (10 dry and 10 wet types AMD patients and 10 healthy people) were involved in the study. SYBR-Green based Real-Time PCR analysis was performed on isolated peripheral blood mononuclear cells (PBMCs) to analyze differentially expressed genes related to these cases. According to the investigations, only the CRP gene was found to be upregulated for both dry and wet disease types. When the downregulated genes were analyzed, it was found that 11 genes were commonly decreased for both dry and wet types in the aspect of expression pattern. From these genes, CFH, CX3CR1, FLT1, and TIMP3 were found to have the most downregulated gene expression properties for both diseases. From these results, it might be concluded that these common upregulated and downregulated genes could be used as targets for early diagnosis and treatment for AMD.
  •  
20.
  • Gouleni, Niki, et al. (författare)
  • Anticancer Potential of Novel Cinnamoyl Derivatives against U87MG and SHSY-5Y Cell Lines
  • 2024
  • Ingår i: Anti-Cancer Agents in Medicinal Chemistry. - : Bentham Science Publishers Ltd.. - 1871-5206 .- 1875-5992. ; 24:1, s. 39-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Glioblastoma multiforme (GBM) is probably the most malignant and aggressive brain tumor belonging to the class of astrocytomas. The considerable aggressiveness and high malignancy of GBM make it a tumor that is difficult to treat. Here, we report the synthesis and biological evaluation of eighteen novel cinnamoyl derivatives (3a-i and 4a-i) to obtain more effective antitumor agents against GBM. Methods: The chemical structures of novel cinnamoyl derivatives (3a-i and 4a-i) were confirmed by NMR and MS analyses. The physicochemical properties and evaluation of the ADME profile of 3a-i and 4a-i were performed by the preADMETlab2.0 web program. Cinnamoyl derivatives 3a-i and 4a-i were tested in vitro for their cytotoxicity against the human healthy fibroblast (HDFa) cells using an MTT cell viability assay. Derivatives with no toxicity on HDFa cells were tested both on human glioblastoma (U87MG) and neuroblastoma (SHSY5Y) cells, chosen as an experimental model of brain tumors. Cell death mechanisms were analyzed by performing flow cytometry analyses. Results: Cinnamoyl derivatives 3a-i and 4a-i showed good physicochemical and ADME properties suggesting that these compounds could be developed as oral drugs endowed with a high capability to cross the blood-brain barrier. Compounds (E)-1-methoxy-4-(2-(phenylsulfonyl)vinyl)benzene (2c) and (E)-N-benzyl-N-(2-(cyclohexylamino)-2-oxoethyl)-3-(3,4,5-trimethoxyphenyl)acrylamide (3e) did not show cytotoxicity on healthy human fibroblast cells up to 100 µg/mL. The most anticarcinogenic molecule, compound 3e, emerged as the most potent anticancer candidate in this study. Flow cytometry results showed that compound 3e (25 µg/mL) application resulted in nearly 86% and 84% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Compound 2c (25 µg/mL) resulted in 81% and 82% cytotoxicity in the U87MG and the SHSY-5Y cell lines, respectively. Conclusion: Cinnamoyl derivative 3e inhibits the proliferation of cultured U87MG and SHSY-5Y cells by inducing apoptosis. Further detailed research will be conducted to confirm these data in in vivo experimental animal models.
  •  
21.
  • Gouleni, Niki, et al. (författare)
  • Novel styryl-thiazole hybrids as potential anti-Alzheimer's agents
  • 2023
  • Ingår i: RSC Medicinal Chemistry. - : Royal Society of Chemistry (RSC). - 2632-8682. ; 14:11, s. 2315-2326
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, combining the thiazole and cinnamoyl groups into the styryl-thiazole scaffold, a series of novel styryl-thiazole hybrids (6a-p) was rationally designed, synthesized, and evaluated by the multi-target-directed ligands strategy as potential candidates for the treatment of Alzheimer's disease (AD). Hybrids 6e and 6i are the most promising among the synthesized hybrids since they are able to significantly increase cell viabilities in A beta 1-42-exposed-human neuroblastoma cell line (6i at the concentration of 50 mu g mL-1 and 6e at the concentration of 25 mu g mL-1 resulted in similar to 34% and similar to 30% increase in cell viabilities, respectively). Compounds 6e and 6i exhibit highly AChE inhibitory properties in the experimental AD model at 375.6 +/- 18.425 mU mL-1 and 397.6 +/- 32.152 mU mL-1, respectively. Moreover, these data were also confirmed by docking studies and in vitro enzyme inhibition assays. Compared to hybrid 6e and according to the results, 6i also has the highest potential against A beta 1-42 aggregation with over 80% preventive activity. The in silico prediction of the physicochemical properties confirms that 6i possesses a better profile compared to 6e. Therefore, compound 6i presents a promising multi-targeted active molecular profile for treating AD considering the multifactorial nature of AD, and it is reasonable to deepen its mechanisms of action in an in vivo experimental model of AD. Novel styryl-thiazole hybrids (6a-p) was rationally designed, synthesized, and evaluated by the multi-target-directed ligands strategy as potential candidates for the treatment of Alzheimer's disease.
  •  
22.
  • Graves, Occam Kelly, et al. (författare)
  • Discovery of drug targets and therapeutic agents based on drug repositioning to treat lung adenocarcinoma
  • 2023
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier BV. - 0753-3322 .- 1950-6007. ; 161
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lung adenocarcinoma (LUAD) is the one of the most common subtypes in lung cancer. Although various targeted therapies have been used in the clinical practice, the 5-year overall survival rate of patients is still low. Thus, it is urgent to identify new therapeutic targets and develop new drugs for the treatment of the LUAD patients. Methods: Survival analysis was used to identify the prognostic genes. Gene co-expression network analysis was used to identify the hub genes driving the tumor development. A profile-based drug repositioning approach was used to repurpose the potentially useful drugs for targeting the hub genes. MTT and LDH assay were used to measure the cell viability and drug cytotoxicity, respectively. Western blot was used to detect the expression of the proteins. Findings: We identified 341 consistent prognostic genes from two independent LUAD cohorts, whose high expression was associated with poor survival outcomes of patients. Among them, eight genes were identified as hub genes due to their high centrality in the key functional modules in the gene-co-expression network analysis and these genes were associated with the various hallmarks of cancer (e.g., DNA replication and cell cycle). We performed drug repositioning analysis for three of the eight genes (CDCA8, MCM6, and TTK) based on our drug repositioning approach. Finally, we repurposed five drugs for inhibiting the protein expression level of each target gene and validated the drug efficacy by performing in vitro experiments. Interpretation: We found the consensus targetable genes for the treatment of LUAD patients with different races and geographic characteristics. We also proved the feasibility of our drug repositioning approach for the development of new drugs for disease treatment.
  •  
23.
  • Iqbal, Shazia, et al. (författare)
  • Design and synthesis of novel JNK inhibitors targeting liver pyruvate kinase for the treatment of non-alcoholic fatty liver disease and hepatocellular carcinoma
  • 2024
  • Ingår i: Bioorganic chemistry. - : Elsevier BV. - 0045-2068. ; 147
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-alcoholic fatty liver disease (NAFLD) comprises a broad range of liver disease including hepatocellular carcinoma (HCC) with is no FDA-approved drug. Liver pyruvate kinase (PKL) is a major regulator of metabolic flux and ATP generation in liver presenting a potential target for the treatment of NAFLD. Based on our recent finding of JNK-5A's effectiveness in inhibiting PKLR expression through a drug repositioning pipeline, this study aims to improve its efficacy further. We synthesized a series of JNK-5A analogues with targeted modifications, guided by molecular docking studies. These compounds were evaluated for their activities on PKL expression, cell viability, triacylglyceride (TAG) levels, and the expressions of steatosis-related proteins in the human HepG2 cell line. Subsequently, the efficacy of these compounds was assessed in reducing TAG level and toxicity. Compounds 40 (SET-151) and 41 (SET-152) proved to be the most efficient in reducing TAG levels (11.51 ± 0.90 % and 10.77 ± 0.67 %) and demonstrated lower toxicity (61.60 ± 5.00 % and 43.87 ± 1.42 %) in HepG2 cells. Additionally, all synthesized compounds were evaluated for their anti-cancer properties revealing that compound 74 (SET-171) exhibited the highest toxicity in cell viability with IC50 values of 8.82 µM and 2.97 µM in HepG2 and Huh7 cell lines, respectively. To summarize, compounds 40 (SET-151) and 41 (SET-152) show potential for treating NAFLD, while compound 74 (SET-171) holds potential for HCC therapy.
  •  
24.
  • Iqbal, Shazia, et al. (författare)
  • Design and synthesis of novel JNK inhibitors targeting liver pyruvate kinase for the treatment of non-alcoholic fatty liver disease and hepatocellular carcinoma
  • 2024
  • Ingår i: BIOORGANIC CHEMISTRY. - : Elsevier BV. - 0045-2068 .- 1090-2120. ; 147
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-alcoholic fatty liver disease (NAFLD) comprises a broad range of liver disease including hepatocellular carcinoma (HCC) with is no FDA-approved drug. Liver pyruvate kinase (PKL) is a major regulator of metabolic flux and ATP generation in liver presenting a potential target for the treatment of NAFLD. Based on our recent finding of JNK-5A's effectiveness in inhibiting PKLR expression through a drug repositioning pipeline, this study aims to improve its efficacy further. We synthesized a series of JNK-5A analogues with targeted modifications, guided by molecular docking studies. These compounds were evaluated for their activities on PKL expression, cell viability, triacylglyceride (TAG) levels, and the expressions of steatosis-related proteins in the human HepG2 cell line. Subsequently, the efficacy of these compounds was assessed in reducing TAG level and toxicity. Compounds 40 (SET-151) and 41 (SET-152) proved to be the most efficient in reducing TAG levels (11.51 +/- 0.90 % and 10.77 +/- 0.67 %) and demonstrated lower toxicity (61.60 +/- 5.00 % and 43.87 +/- 1.42 %) in HepG2 cells. Additionally, all synthesized compounds were evaluated for their anti-cancer properties revealing that compound 74 (SET-171) exhibited the highest toxicity in cell viability with IC50 values of 8.82 mu M and 2.97 mu M in HepG2 and Huh7 cell lines, respectively. To summarize, compounds 40 (SET-151) and 41 (SET-152) show potential for treating NAFLD, while compound 74 (SET-171) holds potential for HCC therapy.
  •  
25.
  • Jin, Han, et al. (författare)
  • Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1, s. 5417-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell lines are valuable resources as model for human biology and translational medicine. It is thus important to explore the concordance between the expression in various cell lines vis-à-vis human native and disease tissues. In this study, we investigate the expression of all human protein-coding genes in more than 1,000 human cell lines representing 27 cancer types by a genome-wide transcriptomics analysis. The cell line gene expression is compared with the corresponding profiles in various tissues, organs, single-cell types and cancers. Here, we present the expression for each cell line and give guidance for the most appropriate cell line for a given experimental study. In addition, we explore the cancer-related pathway and cytokine activity of the cell lines to aid human biology studies and drug development projects. All data are presented in an open access cell line section of the Human Protein Atlas to facilitate the exploration of all human protein-coding genes across these cell lines.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 57
Typ av publikation
tidskriftsartikel (49)
forskningsöversikt (4)
annan publikation (3)
bokkapitel (1)
Typ av innehåll
refereegranskat (52)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Turkez, Hasan (56)
Mardinoglu, Adil (50)
Uhlén, Mathias (24)
Zhang, Cheng (20)
Arslan, Mehmet Enes (20)
Kim, Woonghee (14)
visa fler...
Li, Xiangyu (13)
Nielsen, Jens B, 196 ... (10)
Cacciatore, Ivana (9)
Di Stefano, Antonio (9)
Yang, Hong (8)
Borén, Jan (8)
Arif, Muhammad (7)
Borén, Jan, 1963 (7)
Altay, Özlem (7)
Mardinoglu, Adil, 19 ... (6)
Shoaie, Saeed (6)
Oner, Sena (6)
Tozlu, Ozlem Ozdemir (6)
Hacimuftuoglu, Ahmet (6)
Yuan, Meng (6)
Yapca, Omer Erkan (5)
Ashraf, Sajda (5)
Cadirci, Kenan (5)
Shi, Mengnan (5)
Tatar, Abdulgani (5)
Hanashalshahaby, Ess ... (4)
Zhang, C. (4)
Tatar, Arzu (4)
Iqbal, Shazia (4)
Sebhaoui, Jihad (4)
Ozcan, Mehmet (4)
Jin, Han (4)
Kahraman, Cigdem Yuc ... (4)
Marinelli, Lisa (4)
Benfeitas, Rui (3)
Yildirim, Serkan (3)
Selvitopi, Harun (3)
Kadi, Abdurrahim (3)
Yildirim, Ozge Cagla ... (3)
Ozdemir, Ozlem (3)
Sonmez, Erdal (3)
Geyikoglu, Fatime (3)
Özcan, Mehmet (3)
Belmen, Burcu (3)
Yeşilyurt, Güldeniz (3)
Emsen, Bugrahan (3)
Ogawa, Seishi (3)
Sato, Yusuke (3)
Kume, Haruki (3)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (57)
Chalmers tekniska högskola (11)
Göteborgs universitet (7)
Karolinska Institutet (6)
Stockholms universitet (2)
Språk
Engelska (57)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (50)
Naturvetenskap (15)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy