SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Turyk Mary) "

Sökning: WFRF:(Turyk Mary)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maitre, Léa, et al. (författare)
  • State-of-the-art methods for exposure-health studies: Results from the exposome data challenge event
  • 2022
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 168
  • Tidskriftsartikel (refereegranskat)abstract
    • The exposome recognizes that individuals are exposed simultaneously to a multitude of different environmental factors and takes a holistic approach to the discovery of etiological factors for disease. However, challenges arise when trying to quantify the health effects of complex exposure mixtures. Analytical challenges include dealing with high dimensionality, studying the combined effects of these exposures and their interactions, integrating causal pathways, and integrating high-throughput omics layers. To tackle these challenges, the Barcelona Institute for Global Health (ISGlobal) held a data challenge event open to researchers from all over the world and from all expertises. Analysts had a chance to compete and apply state-of-the-art methods on a common partially simulated exposome dataset (based on real case data from the HELIX project) with multiple correlated exposure variables (P > 100 exposure variables) arising from general and personal environments at different time points, biological molecular data (multi-omics: DNA methylation, gene expression, proteins, metabolomics) and multiple clinical phenotypes in 1301 mother–child pairs. Most of the methods presented included feature selection or feature reduction to deal with the high dimensionality of the exposome dataset. Several approaches explicitly searched for combined effects of exposures and/or their interactions using linear index models or response surface methods, including Bayesian methods. Other methods dealt with the multi-omics dataset in mediation analyses using multiple-step approaches. Here we discuss features of the statistical models used and provide the data and codes used, so that analysts have examples of implementation and can learn how to use these methods. Overall, the exposome data challenge presented a unique opportunity for researchers from different disciplines to create and share state-of-the-art analytical methods, setting a new standard for open science in the exposome and environmental health field.
  •  
2.
  • Taylor, Kyla W., et al. (författare)
  • Evaluation of the Association between Persistent Organic Pollutants (POPs) and Diabetes in Epidemiological Studies: A National Toxicology Program Workshop Review
  • 2013
  • Ingår i: Environmental Health Perspectives. - : Environmental Health Perspectives. - 1552-9924 .- 0091-6765. ; 121:7, s. 774-783
  • Forskningsöversikt (refereegranskat)abstract
    • BACKGROUND: Diabetes is a major threat to public health in the United States and worldwide. Understanding the role of environmental chemicals in the development or progression of diabetes is an emerging issue in environmental health. OBJECTIVE: We assessed the epidemiologic literature for evidence of associations between persistent organic pollutants (POPs) and type 2 diabetes. METHODS: Using a PubMed search and reference lists from relevant studies or review articles, we identified 72 epidemiological studies that investigated associations of persistent organic pollutants (POPs) with diabetes. We evaluated these studies for consistency, strengths and weaknesses of study design (including power and statistical methods), clinical diagnosis, exposure assessment, study population characteristics, and identification of data gaps and areas for future research. CONCLUSIONS: Heterogeneity of the studies precluded conducting a meta-analysis, but the overall evidence is sufficient for a positive association of some organochlorine POPs with type 2 diabetes. Collectively, these data are not sufficient to establish causality. Initial data mining revealed that the strongest positive correlation of diabetes with POPs occurred with organochlorine compounds, such as trans-nonachlor, dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCBs), and dioxins and dioxin-like chemicals. There is less indication of an association between other nonorganochlorine POPs, such as perfluoroalkyl acids and brominated compounds, and type 2 diabetes. Experimental data are needed to confirm the causality of these POPs, which will shed new light on the pathogenesis of diabetes. This new information should be considered by governmental bodies involved in the regulation of environmental contaminants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy