SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vanderspek R.) "

Sökning: WFRF:(Vanderspek R.)

  • Resultat 1-25 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nielsen, L. D., et al. (författare)
  • Mass determinations of the three mini-Neptunes transiting TOI-125
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 492:4, s. 5399-5412
  • Tidskriftsartikel (refereegranskat)abstract
    • The Transiting Exoplanet Survey Satellite, TESS, is currently carrying out an all-sky search for small planets transiting bright stars. In the first year of the TESS survey, a steady progress was made in achieving the mission's primary science goal of establishing bulk densities for 50 planets smaller than Neptune. During that year, the TESS's observations were focused on the southern ecliptic hemisphere, resulting in the discovery of three mini-Neptunes orbiting the star T01-125, a V = 11,0 KO dwarf. We present intensive HARPS radial velocity observations, yielding precise mass measurements for TO1-125b, TOI-125c, and TOI-125d. TOI-125b has an orbital period of 4,65 d, a radius of 2,726 + 0,075 RE, a mass of 9,50 0,88 ME, and is near the 2:1 mean motion resonance with TOI-125c at 9.15 d. TOI-125c has a similar radius of 2,759 0.10 RE and a mass of 6,63 + 0,99 ME, being the puffiest of the three planets. T01-125d has an orbital period of 19,98 d and a radius of 2.93 + 0,17 RE and mass 13,6 1,2 ME, For T01-125b and d, we find unusual high eccentricities of 0.19 0.04 and 0.17+(c):(!,(, respectively. Our analysis also provides upper mass limits for the two low-SNR planet candidates in the system; for T01-125.04 (Rp = 1.36 RE, P = 0.53 d), we find a 2a upper mass limit of 1.6 ME, whereas T01-125.05 (RP = 4.2-'2E44 RE, P = 13.28 d) is unlikely a viable planet candidate with an upper mass limit of 2.7 ME. We discuss the internal structure of the three confirmed planets, as well as dynamical stability and system architecture for this intriguing exoplanet system.
  •  
2.
  • Alqasim, A., et al. (författare)
  • TOI−757 b: an eccentric transiting mini−Neptune on a 17.5−d orbit
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 533:1, s. 1-26
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the spectroscopic confirmation and fundamental properties of TOI−757 b, a mini−Neptune on a 17.5−d orbit transiting a bright star (V = 9.7 mag) discovered by the TESS mission. We acquired high−precision radial velocity measurements with the HARPS, ESPRESSO, and PFS spectrographs to confirm the planet detection and determine its mass. We also acquired space−borne transit photometry with the CHEOPS space telescope to place stronger constraints on the planet radius, supported with ground−based LCOGT photometry. WASP and KELT photometry were used to help constrain the stellar rotation period. We also determined the fundamental parameters of the host star. We find that TOI−757 b has a radius of Rp = 2.5 ± 0.1R. and a mass of Mp = 10.5+−2212M, implying a bulk density of ρp = 3.6 ± 0.8 g cm−3. Our internal composition modelling was unable to constrain the composition of TOI−757 b, highlighting the importance of atmospheric observations for the system. We also find the planet to be highly eccentric with e = 0.39+−000708, making it one of the very few highly eccentric planets among precisely characterized mini−Neptunes. Based on comparisons to other similar eccentric systems, we find a likely scenario for TOI−757 b’s formation to be high eccentricity migration due to a distant outer companion. We additionally propose the possibility of a more intrinsic explanation for the high eccentricity due to star−star interactions during the earlier epoch of the Galactic disc formation, given the low metallicity and older age of TOI−757.
  •  
3.
  • Carleo, Ilaria, et al. (författare)
  • The Multiplanet System TOI-421*
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 160:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
  •  
4.
  • Fukui, A., et al. (författare)
  • TOI-1749: an M dwarf with a Trio of Planets including a Near-resonant Pair
  • 2021
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 162:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of one super-Earth- (TOI-1749b) and two sub-Neptune-sized planets (TOI-1749c and TOI-1749d) transiting an early M dwarf at a distance of 100 pc, which were first identified as planetary candidates using data from the TESS photometric survey. We have followed up this system from the ground by means of multiband transit photometry, adaptive optics imaging, and low-resolution spectroscopy, from which we have validated the planetary nature of the candidates. We find that TOI-1749b, c, and d have orbital periods of 2.39, 4.49, and 9.05 days, and radii of 1.4, 2.1, and 2.5 R (circle plus), respectively. We also place 95% confidence upper limits on the masses of 57, 14, and 15 M (circle plus) for TOI-1749b, c, and d, respectively, from transit timing variations. The periods, sizes, and tentative masses of these planets are in line with a scenario in which all three planets initially had a hydrogen envelope on top of a rocky core, and only the envelope of the innermost planet has been stripped away by photoevaporation and/or core-powered mass-loss mechanisms. These planets are similar to other planetary trios found around M dwarfs, such as TOI-175b,c,d and TOI-270b,c,d, in the sense that the outer pair has a period ratio within 1% of 2. Such a characteristic orbital configuration, in which an additional planet is located interior to a near 2:1 period-ratio pair, is relatively rare around FGK dwarfs.
  •  
5.
  • Holdsworth, D. L., et al. (författare)
  • TESS cycle 1 observations of roAp stars with 2-min cadence data
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 506:1, s. 1073-1110
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a systematic search for new rapidly oscillating Ap (roAp) stars using the 2-min cadence data collected by the Transiting Exoplanet Survey Satellite (TESS) during its Cycle 1 observations. We identify 12 new roAp stars. Amongst these stars we discover the roAp star with the longest pulsation period, another with the shortest rotation period, and six with multiperiodic variability. In addition to these new roAp stars, we present an analysis of 44 known roAp stars observed by TESS during Cycle 1, providing the first high-precision and homogeneous sample of a significant fraction of the known roAp stars. The TESS observations have shown that almost 60 percent (33) of our sample of stars are multiperiodic, providing excellent cases to test models of roAp pulsations, and from which the most rewarding asteroseismic results can be gleaned. We report four cases of the occurrence of rotationally split frequency multiplets that imply different mode geometries for the same degree modes in the same star. This provides a conundrum in applying the oblique pulsator model to the roAp stars. Finally, we report the discovery of non-linear mode interactions in alpha Cir (TIC402546736, HD128898) around the harmonic of the principal mode - this is only the second case of such a phenomenon.
  •  
6.
  • Delrez, L., et al. (författare)
  • Refining the properties of the TOI-178 system with CHEOPS and TESS
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 678
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The TOI-178 system consists of a nearby late K-dwarf transited by six planets in the super-Earth to mini-Neptune regime, with radii ranging from -1.1 to 2.9 R and orbital periods between 1.9 and 20.7 days. All planets but the innermost one form a chain of Laplace resonances. Mass estimates derived from a preliminary radial velocity (RV) dataset suggest that the planetary densities do not decrease in a monotonic way with the orbital distance to the star, contrary to what one would expect based on simple formation and evolution models. Aims. To improve the characterisation of this key system and prepare for future studies (in particular with JWST), we performed a detailed photometric study based on 40 new CHEOPS visits, one new TESS sector, and previously published CHEOPS, TESS, and NGTS data. Methods. First we updated the parameters of the host star using the new parallax from Gaia EDR3. We then performed a global analysis of the 100 transits contained in our data to refine the physical and orbital parameters of the six planets and study their transit timing variations (TTVs). We also used our extensive dataset to place constraints on the radii and orbital periods of potential additional transiting planets in the system. Results. Our analysis significantly refines the transit parameters of the six planets, most notably their radii, for which we now obtain relative precisions of -3%, with the exception of the smallest planet, b, for which the precision is 5.1%. Combined with the RV mass estimates, the measured TTVs allow us to constrain the eccentricities of planets c to g, which are found to be all below 0.02, as expected from stability requirements. Taken alone, the TTVs also suggest a higher mass for planet d than that estimated from the RVs, which had been found to yield a surprisingly low density for this planet. However, the masses derived from the current TTV dataset are very prior-dependent, and further observations, over a longer temporal baseline, are needed to deepen our understanding of this iconic planetary system.
  •  
7.
  • Esparza-Borges, E., et al. (författare)
  • A hot sub-Neptune in the desert and a temperate super-Earth around faint M dwarfs Color validation of TOI-4479b and TOI-2081b
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We report the discovery and validation of two TESS exoplanets orbiting faint M dwarfs: TOI-4479b and TOI-2081b. Methods. We jointly analyzed space (TESS mission) and ground-based (MuSCAT2, MuSCAT3 and SINISTRO instruments) light curves using our multicolor photometry transit analysis pipeline. This allowed us to compute contamination limits for both candidates and validate them as planet-sized companions. Results. We found TOI-4479b to be a sub-Neptune-sized planet (R-p = 2.82(-0.63)(+0.65) R-circle plus) and TOI-2081b to be a super-Earth-sized planet (R-p = 2.04(-0.54)(+0.50) R-circle plus). Furthermore, we obtained that TOI-4479b, with a short orbital period of 1.15890(-0.00001)(+0.00002) days, lies within the Neptune desert and is in fact the largest nearly ultra-short period planet around an M dwarf known to date. Conclusions. These results make TOI-4479b rare among the currently known exoplanet population of M dwarf stars and an especially interesting target for spectroscopic follow-up and future studies of planet formation and evolution.
  •  
8.
  • Georgieva, Iskra, 1987, et al. (författare)
  • Hot planets around cool stars - two short-period mini-Neptunes transiting the late K-dwarf TOI-1260
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:4, s. 4684-4701
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two sub-Neptunes in close orbits, as well as a tentative outer planet of a similar size, orbiting TOI-1260 - a low metallicity K6V dwarf star. Photometry from Transiting Exoplanet Survey Satellite(TESS) yields radii of R-b = 2.33 +/- 0.10 and R-c = 2.82 +/- 0.15 R-circle plus, and periods of 3.13 and 7.49 d for TOI-1260b and TOI-1260c, respectively. We combined the TESS data with a series of ground-based follow-up observations to characterize the planetary system. From HARPS-N high-precision radial velocities we obtain M-b = and M-c = M-circle plus. The star is moderately active with a complex activity pattern, which necessitated the use of Gaussian process regression for both the light-curve detrending and the radial velocity modelling, in the latter case guided by suitable activity indicators. We successfully disentangle the stellar-induced signal from the planetary signals, underlining the importance and usefulness of the Gaussian process approach. We test the system's stability against atmospheric photoevaporation and find that the TOI-1260 planets are classic examples of the structure and composition ambiguity typical for the 2-3 R-circle plus range.
  •  
9.
  • Hoyer, S., et al. (författare)
  • TOI-220b: a warm sub-Neptune discovered by TESS
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:3, s. 3361-3379
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we report the discovery of TOI-220b, a new sub-Neptune detected by the Transiting Exoplanet Survey Satellite (TESS) and confirmed by radial velocity follow-up observations with the HARPS spectrograph. Based on the combined analysis of TESS transit photometry and high precision radial velocity measurements, we estimate a planetary mass of 13.8 +/- 1.0M(circle plus) and radius of 3.03 +/- 0.15R(circle plus), implying a bulk density of 2.73 +/- 0.47. TOI-220b orbits a relative bright (V=10.4) and old (10.1 +/- 1.4Gyr) K dwarf star with a period of similar to 10.69d. Thus, TOI-220b is a new warm sub-Neptune with very precise mass and radius determinations. A Bayesian analysis of the TOI-220b internal structure indicates that due to the strong irradiation it receives, the low density of this planet could be explained with a steam atmosphere in radiative-convective equilibrium and a supercritical water layer on top of a differentiated interior made of a silicate mantle and a small iron core.
  •  
10.
  • Lam, K. W.F., et al. (författare)
  • GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6572, s. 1271-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrashort-period (USP) exoplanets have orbital periods shorter than 1 day. Precise masses and radii of USP exoplanets could provide constraints on their unknown formation and evolution processes. We report the detection and characterization of the USP planet GJ 367b using high-precision photometry and radial velocity observations. GJ 367b orbits a bright (V-band magnitude of 10.2), nearby, and red (M-type) dwarf star every 7.7 hours. GJ 367b has a radius of 0.718 ± 0.054 Earth-radii and a mass of 0.546 ± 0.078 Earth-masses, making it a sub-Earth planet. The corresponding bulk density is 8.106 ± 2.165 grams per cubic centimeter—close to that of iron. An interior structure model predicts that the planet has an iron core radius fraction of 86 ± 5%, similar to that of Mercury’s interior.
  •  
11.
  • Otegi, J. F., et al. (författare)
  • TESS and HARPS reveal two sub-Neptunes around TOI 1062
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • The Transiting Exoplanet Survey Satellite (TESS) mission was designed to perform an all-sky search of planets around bright and nearby stars. Here we report the discovery of two sub-Neptunes orbiting around TOI 1062 (TIC 299799658), a V = 10.25 G9V star observed in the TESS Sectors 1, 13, 27, and 28. We use precise radial velocity observations from HARPS to confirm and characterize these two planets. TOI 1062b has a radius of 2.265 (+0.096)(-0.091) R-circle plus, a mass of 10.15 +/- 0.8 M-circle plus, and an orbital period of 4.1130 +/- 0.0015 days. The second planet is not transiting, has a minimum mass of 9.78 (+1.26)(-1.18) M-circle plus and is near the 2:1 mean motion resonance with the innermost planet with an orbital period of 7.972 (+0.018)(-0.024) days. We performed a dynamical analysis to explore the proximity of the system to this resonance, and to attempt further constraining the orbital parameters. The transiting planet has a mean density of 4.85(-0.74)(+0.84) g cm(-3) and an analysis of its internal structure reveals that it is expected to have a small volatile envelope accounting for 0.35% of the mass at most. The star's brightness and the proximity of the inner planet to what is know as the radius gap make it an interesting candidate for transmission spectroscopy, which could further constrain the composition and internal structure of TOI 1062b.
  •  
12.
  • Serrano, L. M., et al. (författare)
  • The HD 93963 A transiting system: A 1.04d super-Earth and a 3.65 d sub-Neptune discovered by TESS and CHEOPS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of two small planets transiting HD 93963A (TOI-1797), a GOV star (M-* = 1.109 +/- 0.043M(circle dot), R-* = 1.043 +/- 0.009 R-circle dot) in a visual binary system. We combined TESS and CHEOPS space-borne photometry with MuSCAT 2 ground-based photometry, 'Alopeke and PHARO high-resolution imaging, TRES and FIES reconnaissance spectroscopy, and SOPHIE radial velocity measurements. We validated and spectroscopically confirmed the outer transiting planet HD 93963 A c, a sub-Neptune with an orbital period of P-c approximate to 3.65 d that was reported to be a TESS object of interest (TOI) shortly after the release of Sector 22 data. HD 93963 A c has amass of M-c = 19.2 +/- 4.1 M-circle plus and a radius of R-c = 3.228 +/- 0.059 R-circle plus, implying a mean density of rho(c) = 3.1 +/- 0.7 g cm(-3). The inner object, HD 93963 A b, is a validated 1.04 d ultra-short period (USP) transiting super-Earth that we discovered in the TESS light curve and that was not listed as a TOI, owing to the low significance of its signal (TESS signal-to-noise ratio approximate to 6.7, TESS + CHEOPS combined transit depth D-b = 141.5(-8.3)(+8.5) ppm). We intensively monitored the star with CHEOPS by performing nine transit observations to confirm the presence of the inner planet and validate the system. HD 93963 A b is the first small (R-b = 1.35 +/- 0.042 R-circle plus) USP planet discovered and validated by TESS and CHEOPS. Unlike planet c, HD 93963 Ab is not significantly detected in our radial velocities (M-b = 7.8 +/- 3.2 M-circle plus). The two planets are on either side of the radius valley, implying that they could have undergone completely different evolution processes. We also discovered a linear trend in our Doppler measurements, suggesting the possible presence of a long-period outer planet. With a V-band magnitude of 9.2, HD 93963 A is among the brightest stars known to host a USP planet, making it one of the most favourable targets for precise mass measurement via Doppler spectroscopy and an important laboratory to test formation, evolution, and migration models of planetary systems hosting ultra-short period planets.
  •  
13.
  • Turtelboom,, et al. (författare)
  • The TESS-Keck Survey. XI. Mass Measurements for Four Transiting Sub-Neptunes Orbiting K Dwarf TOI-1246
  • 2022
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 163:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiplanet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V = 11.6, K = 9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31, 5.90, 18.66, and 37.92 days. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97 +/- 0.06 R (circle plus), 2.47 +/- 0.08 R (circle plus), 3.46 +/- 0.09 R (circle plus), and 3.72 +/- 0.16 R (circle plus)) and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1 +/- 1.1 M (circle plus), 8.8 +/- 1.2 M (circle plus), 5.3 +/- 1.7 M (circle plus), and 14.8 +/- 2.3 M (circle plus)). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (P (e)/P ( d ) = 2.03) and exhibit transit-timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only five systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70 +/- 0.24 to 3.21 +/- 0.44 g cm(-3), implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 +/- 3.6 M (circle plus). This planet candidate is exterior to TOI-1246 e, with a candidate period of 93.8 days, and we discuss the implications if it is confirmed to be planetary in nature.
  •  
14.
  • Van Eylen, Vincent, et al. (författare)
  • Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 507:2, s. 2154-2173
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf (d = 22 pc, M = 0.39 M, R = 0.38 R), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 d. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be 1.58 ± 0.26, 6.15 ± 0.37, and 4.78 ± 0.43 M, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the 'radius valley'-a region in the radius-period diagram with relatively few members-which has been interpreted as a consequence of atmospheric photoevaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf (Teff < 4000 K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photoevaporation and core-powered mass-loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere.
  •  
15.
  • Bluhm, P., et al. (författare)
  • Precise mass and radius of a transiting super-Earth planet orbiting the M dwarf TOI-1235: a planet in the radius gap?
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the confirmation of a transiting planet around the bright weakly active M0.5 V star TOI-1235 (TYC 4384-1735-1, V ≈ 11.5 mag), whose transit signal was detected in the photometric time series of sectors 14, 20, and 21 of the TESS space mission. We confirm the planetary nature of the transit signal, which has a period of 3.44 d, by using precise RV measurements with the CARMENES, HARPS-N, and iSHELL spectrographs, supplemented by high-resolution imaging and ground-based photometry. A comparison of the properties derived for TOI-1235 b with theoretical models reveals that the planet has a rocky composition, with a bulk density slightly higher than that of Earth. In particular, we measure a mass of Mp = 5.9 ± 0.6 M⊕ and a radius of Rp = 1.69 ± 0.08 R⊕, which together result in a density of ρp = 6.7- 1.1+ 1.3 g cm-3. When compared with other well-characterized exoplanetary systems, the particular combination of planetary radius and mass places our discovery in the radius gap, which is a transition region between rocky planets and planets with significant atmospheric envelopes. A few examples of planets occupying the radius gap are known to date. While the exact location of the radius gap for M dwarfs is still a matter of debate, our results constrain it to be located at around 1.7 R⊕ or larger at the insolation levels received by TOI-1235 b (~60 S⊕). This makes it an extremely interesting object for further studies of planet formation and atmospheric evolution.
  •  
16.
  • Hori, Yasunori, et al. (författare)
  • The Discovery and Follow-up of Four Transiting Short-period Sub-Neptunes Orbiting M Dwarfs
  • 2024
  • Ingår i: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 167:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Sub-Neptunes with radii of 2-3 R ⊕ are intermediate in size between rocky planets and Neptune-sized planets. The orbital properties and bulk compositions of transiting sub-Neptunes provide clues to the formation and evolution of close-in small planets. In this paper, we present the discovery and follow-up of four sub-Neptunes orbiting M dwarfs (TOI-782, TOI-1448, TOI-2120, and TOI-2406), three of which were newly validated by ground-based follow-up observations and statistical analyses. TOI-782 b, TOI-1448 b, TOI-2120 b, and TOI-2406 b have radii of R p = 2.740 − 0.079 + 0.082 R ⊕ , 2.769 − 0.068 + 0.073 R ⊕ , 2.120 ± 0.067 R ⊕, and 2.830 − 0.066 + 0.068 R ⊕ and orbital periods of P = 8.02, 8.11, 5.80, and 3.08 days, respectively. Doppler monitoring with the Subaru/InfraRed Doppler instrument led to 2σ upper limits on the masses of <19.1 M ⊕, <19.5 M ⊕, <6.8 M ⊕, and <15.6 M ⊕ for TOI-782 b, TOI-1448 b, TOI-2120 b, and TOI-2406 b, respectively. The mass-radius relationship of these four sub-Neptunes testifies to the existence of volatile material in their interiors. These four sub-Neptunes, which are located above the so-called “radius valley,” are likely to retain a significant atmosphere and/or an icy mantle on the core, such as a water world. We find that at least three of the four sub-Neptunes (TOI-782 b, TOI-2120 b, and TOI-2406 b), orbiting M dwarfs older than 1 Gyr, are likely to have eccentricities of e ∼ 0.2-0.3. The fact that tidal circularization of their orbits is not achieved over 1 Gyr suggests inefficient tidal dissipation in their interiors.
  •  
17.
  • Knudstrup, E., et al. (författare)
  • Radial velocity confirmation of a hot super-Neptune discovered by TESS with a warm Saturn-mass companion
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:4, s. 5637-5655
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and confirmation of the planetary system TOI-1288. This late G dwarf harbours two planets: TOI-1288 b and TOI-1288 c. We combine TESS space-borne and ground-based transit photometry with HARPS-N and HIRES high-precision Doppler measurements, which we use to constrain the masses of both planets in the system and the radius of planet b. TOI-1288 b has a period of 2.699835(-0.000003)(+0.000004) d, a radius of 5.24 +/- 0.09 R-circle plus, and a mass of 42 +/- 3 M-circle plus, making this planet a hot transiting super-Neptune situated right in the Neptunian desert. This desert refers to a paucity of Neptune-sized planets on short period orbits. Our 2.4-yr-long Doppler monitoring of TOI-1288 revealed the presence of a Saturn-mass planet on a moderately eccentric orbit (0.13(-0.09)(+0.07)) with a minimum mass of 84 +/- 7 M-circle plus and a period of 443(-13)(+11) d. The five sectors worth of TESS data do not cover our expected mid-transit time for TOI-1288 c, and we do not detect a transit for this planet in these sectors.
  •  
18.
  • Korth, J., et al. (författare)
  • TOI-1130: A photodynamical analysis of a hot Jupiter in resonance with an inner low-mass planet
  • 2023
  • Ingår i: Astronomy & Astrophysics. - 1432-0746 .- 0004-6361. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • The TOI-1130 is a known planetary system around a K-dwarf consisting of a gas giant planet, TOI-1130 c on an 8.4-day orbit that is accompanied by an inner Neptune-sized planet, TOI-1130 b, with an orbital period of 4.1 days. We collected precise radial velocity (RV) measurements of TOI-1130 with the HARPS and PFS spectrographs as part of our ongoing RV follow-up program. We performed a photodynamical modeling of the HARPS and PFS RVs, along with transit photometry from the Transiting Exoplanet Survey Satellite (TESS) and the TESS Follow-up Observing Program (TFOP). We determined the planet masses and radii of TOI-1130 b and TOI-1130 c to be Mb = 19.28 ± 0.97M⊕ and Rb = 3.56 ± 0.13 R⊕, and Mc = 325.59 ± 5.59M⊕ and Rc = 13.32−1.41+1.55 R⊕, respectively. We have spectroscopically confirmed the existence of TOI-1130 b, which had previously only been validated. We find that the two planets have orbits with small eccentricities in a 2:1 resonant configuration. This is the first known system with a hot Jupiter and an inner lower mass planet locked in a mean-motion resonance. TOI-1130 belongs to the small, yet growing population of hot Jupiters with an inner low-mass planet that poses a challenge to the pathway scenario for hot Jupiter formation. We also detected a linear RV trend that is possibly due to the presence of an outer massive companion.
  •  
19.
  • Luque, R., et al. (författare)
  • A planetary system with two transiting mini-Neptunes near the radius valley transition around the bright M dwarf TOI-776
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and characterization of two transiting planets around the bright M1 V star LP 961-53 (TOI-776, J = 8.5 mag, M = 0.54 ± 0.03 M⊙) detected during Sector 10 observations of the Transiting Exoplanet Survey Satellite (TESS). Combining the TESS photometry with HARPS radial velocities, as well as ground-based follow-up transit observations from the MEarth and LCOGT telescopes, for the inner planet, TOI-776 b, we measured a period of Pb = 8.25 d, a radius of Rb = 1.85 ± 0.13 R⊙, and a mass of Mb = 4.0 ± 0.9 M⊙; and for the outer planet, TOI-776 c, a period of Pc = 15.66 d, a radius of Rc = 2.02 ± 0.14 R⊙, and a mass of Mc = 5.3 ± 1.8 M⊙. The Doppler data shows one additional signal, with a period of ~34 d, associated with the rotational period of the star. The analysis of fifteen years of ground-based photometric monitoring data and the inspection of different spectral line indicators confirm this assumption. The bulk densities of TOI-776 b and c allow for a wide range of possible interior and atmospheric compositions. However, both planets have retained a significant atmosphere, with slightly different envelope mass fractions. Thanks to their location near the radius gap for M dwarfs, we can start to explore the mechanism(s) responsible for the radius valley emergence around low-mass stars as compared to solar-like stars. While a larger sample of well-characterized planets in this parameter space is still needed to draw firm conclusions, we tentatively estimate that the stellar mass below which thermally-driven mass loss is no longer the main formation pathway for sculpting the radius valley is between 0.63 and 0.54 M⊙. Due to the brightness of the star, the TOI-776 system is also an excellent target for the James Webb Space Telescope, providing a remarkable laboratory in which to break the degeneracy in planetary interior models and to test formation and evolution theories of small planets around low-mass stars.
  •  
20.
  • Murgas, F., et al. (författare)
  • HD 20329b: An ultra-short-period planet around a solar-type star found by TESS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Ultra-short-period (USP) planets are defined as planets with orbital periods shorter than one day. This type of planets is rare, highly irradiated, and interesting because their formation history is unknown. Aims. We aim to obtain precise mass and radius measurements to confirm the planetary nature of a USP candidate found by the Transiting Exoplanet Survey Satellite (TESS). These parameters can provide insights into the bulk composition of the planet candidate and help to place constraints on its formation history. Methods. We used TESS light curves and HARPS-N spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate found around the star HD 20329 (TOI-4524). We performed a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. Results. We confirm and characterize HD 20329b, a USP planet transiting a solar-type star. The host star (HD 20329, V = 8.74 mag, J = 7.5 mag) is characterized by its G5 spectral type with M∗ = 0.90 ± 0.05 M⊙, R∗ = 1.13 ± 0.02 R⊙, and Teff = 5596 ± 50 K; it is located at a distance d = 63.68 ± 0.29 pc. By jointly fitting the available TESS transit light curves and follow-up radial velocity measurements, we find an orbital period of 0.9261 ± (0.5 ×10-4) days, a planetary radius of 1.72 ± 0.07 R∗, and a mass of 7.42 ± 1.09 M∗, implying a mean density of ρp = 8.06 ± 1.53 g cm-3. HD 20329b joins the ~30 currently known USP planets with radius and Doppler mass measurements.
  •  
21.
  • Murgas, F., et al. (författare)
  • TOI-674b: An oasis in the desert of exo-Neptunes transiting a nearby M dwarf
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The NASA mission TESS is currently doing an all-sky survey from space to detect transiting planets around bright stars. As part of the validation process, the most promising planet candidates need to be confirmed and characterized using follow-up observations. Aims. In this article, our aim is to confirm the planetary nature of the transiting planet candidate TOI-674b using spectroscopic and photometric observations. Methods. We use TESS, Spitzer, ground-based light curves, and HARPS spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate TOI-674b. We perform a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. Results. We confirm and characterize TOI-674b, a low-density super-Neptune transiting a nearby M dwarf. The host star (TIC 158588995, V = 14.2 mag, J = 10.3 mag) is characterized by its M2V spectral type with M = 0.420 ± 0.010 M , R = 0.420 ± 0.013 R , and Teff = 3514 ± 57 K; it is located at a distance d = 46.16 ± 0.03 pc. Combining the available transit light curves plus radial velocity measurements and jointly fitting a circular orbit model, we find an orbital period of 1.977143 ± 3 × 10-6 days, a planetary radius of 5.25 ± 0.17 R , and a mass of 23.6 ± 3.3 M implying a mean density of ρp =0.91 ± 0.15 g cm-3. A non-circular orbit model fit delivers similar planetary mass and radius values within the uncertainties. Given the measured planetary radius and mass, TOI-674b is one of the largest and most massive super-Neptune class planets discovered around an M-type star to date. It is found in the Neptunian desert, and is a promising candidate for atmospheric characterization using the James Webb Space Telescope.
  •  
22.
  • Osborn, A., et al. (författare)
  • TOI-332 b: a super dense Neptune found deep within the Neptunian desert
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 526:1, s. 548-566
  • Tidskriftsartikel (refereegranskat)abstract
    • To date, thousands of planets have been discovered, but there are regions of the orbital parameter space that are still bare. An example is the short period and intermediate mass/radius space known as the 'Neptunian desert', where planets should be easy to find but discoveries remain few. This suggests unusual formation and evolution processes are responsible for the planets residing here. We present the discovery of TOI-332 b, a planet with an ultra-short period of 0.78 d that sits firmly within the desert. It orbits a K0 dwarf with an effective temperature of 5251 ± 71 K. TOI-332 b has a radius of R, smaller than that of Neptune, but an unusually large mass of 57.2 ± 1.6 M. It has one of the highest densities of any Neptune-sized planet discovered thus far at g cm-3. A 4-layer internal structure model indicates it likely has a negligible hydrogen-helium envelope, something only found for a small handful of planets this massive, and so TOI-332 b presents an interesting challenge to planetary formation theories. We find that photoevaporation cannot account for the mass-loss required to strip this planet of the Jupiter-like envelope it would have been expected to accrete. We need to look towards other scenarios, such as high-eccentricity migration, giant impacts, or gap opening in the protoplanetary disc, to try and explain this unusual discovery.
  •  
23.
  • Parviainen, H., et al. (författare)
  • TOI-2266 b: A keystone super-Earth at the edge of the M dwarf radius valley
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • We validate the Transiting Exoplanet Survey Satellite (TESS) object of interest TOI-2266.01 (TIC 8348911) as a small transiting planet (most likely a super-Earth) orbiting a faint M5 dwarf (V = 16.54) on a 2.33 d orbit. The validation is based on an approach where multicolour transit light curves are used to robustly estimate the upper limit of the transiting object's radius. Our analysis uses SPOC-pipeline TESS light curves from Sectors 24, 25, 51, and 52, simultaneous multicolour transit photometry observed with MuSCAT2, MuSCAT3' and HiPERCAM, and additional transit photometry observed with the LCOGT telescopes. TOI-2266 b is found to be a planet with a radius of 1.54 ± 0.09 R, which locates it at the edge of the transition zone between rocky planets, water-rich planets, and sub-Neptunes (the so-called M dwarf radius valley). The planet is amenable to ground-based radial velocity mass measurement with red-sensitive spectrographs installed in large telescopes, such as MAROON-X and Keck Planet Finder (KPF), which makes it a valuable addition to a relatively small population of planets that can be used to probe the physics of the transition zone. Further, the planet's orbital period of 2.33 days places it inside a 'keystone planet'wedge in the period-radius plane where competing planet formation scenarios make conflicting predictions on how the radius valley depends on the orbital period. This makes the planet also a welcome addition to the small population of planets that can be used to test small-planet formation scenarios around M dwarfs.
  •  
24.
  • Ehrenreich, D., et al. (författare)
  • A full transit of v 2 Lupi d and the search for an exomoon in its Hill sphere with CHEOPS
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • The planetary system around the naked-eye star v2 Lupi (HD 136352; TOI-2011) is composed of three exoplanets with masses of 4.7, 11.2, and 8.6 Earth masses (M⊕). The TESS and CHEOPS missions revealed that all three planets are transiting and have radii straddling the radius gap separating volatile-rich and volatile-poor super-earths. Only a partial transit of planet d had been covered so we re-observed an inferior conjunction of the long-period 8.6 M⊕ exoplanet v2 Lup d with the CHEOPS space telescope. We confirmed its transiting nature by covering its whole 9.1 h transit for the first time. We refined the planet transit ephemeris to P = 107.13610.0022+0.0019 days and Tc = 2459009.77590.0096+0.0101 BJDTDB, improving by ~40 times on the previously reported transit timing uncertainty. This refined ephemeris will enable further follow-up of this outstanding long-period transiting planet to search for atmospheric signatures or explore the planet s Hill sphere in search for an exomoon. In fact, the CHEOPS observations also cover the transit of a large fraction of the planet s Hill sphere, which is as large as the Earth s, opening the tantalising possibility of catching transiting exomoons. We conducted a search for exomoon signals in this single-epoch light curve but found no conclusive photometric signature of additional transiting bodies larger than Mars. Yet, only a sustained follow-up of v2 Lup d transits will warrant a comprehensive search for a moon around this outstanding exoplanet.
  •  
25.
  • Hoyer, S., et al. (författare)
  • Characterization of the HD 108236 system with CHEOPS and TESS Confirmation of a fifth transiting planet
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The HD 108236 system was first announced with the detection of four small planets based on TESS data. Shortly after, the transit of an additional planet with a period of 29.54 d was serendipitously detected by CHEOPS. In this way, HD 108236 (V = 9.2) became one of the brightest stars known to host five small transiting planets (Rp < 3 Ro˙). Aims. We characterize the planetary system by using all the data available from CHEOPS and TESS space missions. We use the flexible pointing capabilities of CHEOPS to follow up the transits of all the planets in the system, including the fifth transiting body. Methods. After updating the host star parameters by using the results from Gaia eDR3, we analyzed 16 and 43 transits observed by CHEOPS and TESS, respectively, to derive the planets' physical and orbital parameters. We carried out a timing analysis of the transits of each of the planets of HD 108236 to search for the presence of transit timing variations. Results. We derived improved values for the radius and mass of the host star (R∗ = 0.876 ± 0.007 R0 and M∗ = 0.867-0.046+0.047M). We confirm the presence of the fifth transiting planet f in a 29.54 d orbit. Thus, the HD 108236 system consists of five planets of Rb = 1.587±0.028, Rc = 2.122±0.025, Rd = 2.629 ± 0.031, Re = 3.008 ± 0.032, and Rf = 1.89 ± 0.04 [Ro˙]. We refine the transit ephemeris for each planet and find no significant transit timing variations for planets c, d, and e. For planets b and f, instead, we measure significant deviations on their transit times (up to 22 and 28 min, respectively) with a non-negligible dispersion of 9.6 and 12.6 min in their time residuals. Conclusions. We confirm the presence of planet f and find no significant evidence for a potential transiting planet in a 10.9 d orbital period, as previously suggested. Further monitoring of the transits, particularly for planets b and f, would confirm the presence of the observed transit time variations. HD 108236 thus becomes a key multi-planetary system for the study of formation and evolution processes. The reported precise results on the planetary radii - together with a profuse RV monitoring - will allow for an accurate characterization of the internal structure of these planets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy