SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vandvik Vigdis) "

Sökning: WFRF:(Vandvik Vigdis)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Althuizen, Inge H. J., et al. (författare)
  • Long-Term climate regime modulates the impact of short-term climate variability on decomposition in alpine grassland soils
  • 2018
  • Ingår i: Ecosystems (New York. Print). - : Springer. - 1432-9840 .- 1435-0629. ; 21:8, s. 1580-1592
  • Tidskriftsartikel (refereegranskat)abstract
    • Decomposition of plant litter is an important process in the terrestrial carbon cycle and makes up approximately 70% of the global carbon flux from soils to the atmosphere. Climate change is expected to have significant direct and indirect effects on the litter decomposition processes at various timescales. Using the TeaBag Index, we investigated the impact on decomposition of short-term direct effects of temperature and precipitation by comparing temporal variability over years, versus long-term climate impacts that incorporate indirect effects mediated through environmental changes by comparing sites along climatic gradients. We measured the initial decomposition rate (k) and the stabilization factor (S; amount of labile litter stabilizing) across a climate grid combining three levels of summer temperature (6.5-10.5 degrees C) with four levels of annual precipitation (600-2700 mm) in three summers with varying temperature and precipitation. Several (a)biotic factors were measured to characterize environmental differences between sites. Increased temperatures enhanced k, whereas increased precipitation decreased k across years and climatic regimes. In contrast, S showed diverse responses to annual changes in temperature and precipitation between climate regimes. Stabilization of labile litter fractions increased with temperature only in boreal and sub-alpine sites, while it decreased with increasing precipitation only in sub-alpine and alpine sites. Environmental factors such as soil pH, soil C/N, litter C/N, and plant diversity that are associated with long-term climate variation modulate the response of k and S. This highlights the importance of long-term climate in shaping the environmental conditions that influences the response of decomposition processes to climate change.
  •  
2.
  •  
3.
  • Andersson, Roy, et al. (författare)
  • Korleis få professorar med på ein kollegial SoTL-kultur?
  • 2017
  • Ingår i: Nordic journal of STEM education. - : Norwegian University of Science and Technology (NTNU) Library. - 2535-4574. ; 1:1, s. 15-19
  • Tidskriftsartikel (refereegranskat)abstract
    • I den offentlege debatten om høgare utdanning er undervisarane påfallande fråverande. Dei sterkaste stemmene tilhøyrar politikarane, studentane, institusjonsleiarane og pedagogane. Når undervisarane melder seg på er det oftast i ein klagesong over høgt arbeidspress, krevjande studentar og mangel på tid og ressursar til forsking. Kvifor oppfattar brorparten av undervisarar i høgare utdanning undervising som ei byrde og forsking som eit privilegium? Ein viktig skilnad ligg i kulturen, det kollegiale fellesskapet, som er sterkt og levande i forskinga, men nærmast fråverande i undervisinga. Dette blir stadfesta i ei nasjonal undersøking av studentar, undervisingsstab og arbeidsgjevarar innan biologiske fag. Eit av hovudmåla til Senter for framifrå utdanning i biologi (bioCEED) er å bygge ein kollegial og forskande lærarkultur (Scholarship of Teaching and Learning – SoTL). Vi meiner at nøkkelen til å utvikle ein SoTL kultur er å bringe det beste frå forskarkulturen inn i undervisingskulturen. Å dokumentere, skildre og forankre undervisninga i pedagogisk teori og å dele erfaringar i lærarkollegiet, er ei ny oppleving for mange undervisarar – men likevel kjent for dei fleste i deira forskarrolle. Her viser vi korleis ein systematisk institusjonell innsats for å bygge ein forskande og kollegial lærarkultur, inspirert av forskarkulturen, kan hjelpe ei gruppe undervisarar å finne eit felles språk og si eiga stemma i diskusjonen om læring og undervising. Ein kollegial og forskande lærarkultur endrar innhaldet og hevar nivået på dei undervisingsfaglege diskusjonane, og aukar òg engasjement, og deltaking i debatten om læring og undervising både lokalt og offentle
  •  
4.
  • Auffret, Alistair G., et al. (författare)
  • More warm-adapted species in soil seed banks than in herb layer plant communities across Europe
  • 2023
  • Ingår i: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 111:5, s. 1009-1020
  • Tidskriftsartikel (refereegranskat)abstract
    • Responses to climate change have often been found to lag behind the rate of warming that has occurred. In addition to dispersal limitation potentially restricting spread at leading range margins, the persistence of species in new and unsuitable conditions is thought to be responsible for apparent time-lags. Soil seed banks can allow plant communities to temporarily buffer unsuitable environmental conditions, but their potential to slow responses to long-term climate change is largely unknown. As local forest cover can also buffer the effects of a warming climate, it is important to understand how seed banks might interact with land cover to mediate community responses to climate change. We first related species-level seed bank persistence and distribution-derived climatic niches for 840 plant species. We then used a database of plant community data from grasslands, forests and intermediate successional habitats from across Europe to investigate relationships between seed banks and their corresponding herb layers in 2763 plots in the context of climate and land cover. We found that species from warmer climates and with broader distributions are more likely to have a higher seed bank persistence, resulting in seed banks that are composed of species with warmer and broader climatic distributions than their corresponding herb layers. This was consistent across our climatic extent, with larger differences (seed banks from even warmer climates relative to vegetation) found in grasslands. Synthesis. Seed banks have been shown to buffer plant communities through periods of environmental variability, and in a period of climate change might be expected to contain species reflecting past, cooler conditions. Here, we show that persistent seed banks often contain species with relatively warm climatic niches and those with wide climatic ranges. Although these patterns may not be primarily driven by species’ climatic adaptations, the prominence of such species in seed banks might still facilitate climate-driven community shifts. Additionally, seed banks may be related to ongoing trends regarding the spread of widespread generalist species into natural habitats, while cool-associated species may be at risk from both short- and long-term climatic variability and change. 
  •  
5.
  • Chacón-Labella, Julia, et al. (författare)
  • From a crisis to an opportunity : Eight insights for doing science in the COVID-19 era and beyond
  • 2021
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 11:8, s. 3588-3596
  • Tidskriftsartikel (refereegranskat)abstract
    • The COVID-19 crisis has forced researchers in Ecology to change the way we work almost overnight. Nonetheless, the pandemic has provided us with several novel components for a new way of conducting science. In this perspective piece, we summarize eight central insights that are helping us, as early career researchers, navigate the uncertainties, fears, and challenges of advancing science during the COVID-19 pandemic. We highlight how innovative, collaborative, and often Open Science-driven developments that have arisen from this crisis can form a blueprint for a community reinvention in academia. Our insights include personal approaches to managing our new reality, maintaining capacity to focus and resilience in our projects, and a variety of tools that facilitate remote collaboration. We also highlight how, at a community level, we can take advantage of online communication platforms for gaining accessibility to conferences and meetings, and for maintaining research networks and community engagement while promoting a more diverse and inclusive community. Overall, we are confident that these practices can support a more inclusive and kinder scientific culture for the longer term.
  •  
6.
  •  
7.
  •  
8.
  • Geange, Sonya R., et al. (författare)
  • Next-generation field courses : Integrating Open Science and online learning
  • 2021
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 11:8, s. 3577-3587
  • Tidskriftsartikel (refereegranskat)abstract
    • As Open Science practices become more commonplace, there is a need for the next generation of scientists to be well versed in these aspects of scientific research. Yet, many training opportunities for early career researchers (ECRs) could better emphasize or integrate Open Science elements. Field courses provide opportunities for ECRs to apply theoretical knowledge, practice new methodological approaches, and gain an appreciation for the challenges of real-life research, and could provide an excellent platform for integrating training in Open Science practices. Our recent experience, as primarily ECRs engaged in a field course interrupted by COVID-19, led us to reflect on the potential to enhance learning outcomes in field courses by integrating Open Science practices and online learning components. Specifically, we highlight the opportunity for field courses to align teaching activities with the recent developments and trends in how we conduct research, including training in: publishing registered reports, collecting data using standardized methods, adopting high-quality data documentation, managing data through reproducible workflows, and sharing and publishing data through appropriate channels. We also discuss how field courses can use online tools to optimize time in the field, develop open access resources, and cultivate collaborations. By integrating these elements, we suggest that the next generation of field courses will offer excellent arenas for participants to adopt Open Science practices.
  •  
9.
  • Graae, Bente J., et al. (författare)
  • Stay or go - how topographic complexity influences alpine plant population and community responses to climate change
  • 2018
  • Ingår i: Perspectives in plant ecology, evolution and systematics. - : Elsevier BV. - 1433-8319 .- 1618-0437. ; 30, s. 41-50
  • Tidskriftsartikel (refereegranskat)abstract
    • In the face of climate change, populations have two survival options - they can remain in situ and tolerate the new climatic conditions (stay), or they can move to track their climatic niches (go). For sessile and small-stature organisms like alpine plants, staying requires broad climatic tolerances, realized niche shifts due to changing biotic interactions, acclimation through plasticity, or rapid genetic adaptation. Going, in contrast, requires good dispersal and colonization capacities. Neither the magnitude of climate change experienced locally nor the capacities required for staying/going in response to climate change are constant across landscapes, and both aspects may be strongly affected by local microclimatic variation associated with topographic complexity. We combine ideas from population and community ecology to discuss the effects of topographic complexity in the landscape on the immediate stay or go opportunities of local populations and communities, and on the selective pressures that may have shaped the stay or go capacities of the species occupying contrasting landscapes. We demonstrate, using example landscapes of different topographical complexity, how species' thermal niches could be distributed across these landscapes, and how these, in turn, may affect many population and community ecological processes that are related to adaptation or dispersal. Focusing on treeless alpine or Arctic landscapes, where temperature is expected to be a strong determinant, our theorethical framework leads to the hypothesis that populations and communities of topographically complex (rough and patchy) landscapes should be both more resistant and more resilient to climate change than those of topographically simple (flat and homogeneous) landscapes. Our theorethical framework further points to how meta-community dynamics such as mass effects in topographically complex landscapes and extinction lags in simple landscapes, may mask and delay the long-term outcomes of these landscape differences under rapidly changing climates.
  •  
10.
  • Halbritter, Aud H., et al. (författare)
  • Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Perú
  • 2024
  • Ingår i: SCIENTIFIC DATA. - 2052-4463. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.
  •  
11.
  •  
12.
  • Keetz, Lasse T., et al. (författare)
  • Climate–ecosystem modelling made easy : The Land Sites Platform
  • 2023
  • Ingår i: Global Change Biology. - 1354-1013. ; 29:15, s. 4440-4452
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.
  •  
13.
  • Kemppinen, Julia, et al. (författare)
  • Microclimate, an important part of ecology and biogeography
  • 2024
  • Ingår i: GLOBAL ECOLOGY AND BIOGEOGRAPHY. - 1466-822X .- 1466-8238. ; 33:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeographyWe highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem managementMicroclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate scienceWe showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
  •  
14.
  • Lenoir, Jonathan, et al. (författare)
  • Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe
  • 2013
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 19:5, s. 1470-1481
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies from mountainous areas of small spatial extent (<2500km2) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000-m2 units (community-inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1-km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1-km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100-km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 4672% of variation in LmT and 9296% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km2 units peaked at 6065 degrees N and increased with terrain roughness, averaging 1.97 degrees C (SD=0.84 degrees C) and 2.68 degrees C (SD=1.26 degrees C) within the flattest and roughest units respectively. Complex interactions between topography-related variables and latitude explained 35% of variation in growing-season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing-season CiT within 100-km2 units was, on average, 1.8 times greater (0.32 degrees Ckm1) than spatial turnover in growing-season GiT (0.18 degrees Ckm1). We conclude that thermal variability within 1-km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
  •  
15.
  • Lett, Signe, et al. (författare)
  • Can bryophyte groups increase functional resolution in tundra ecosystems?
  • 2022
  • Ingår i: Arctic Science. - Ottawa : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 609-637
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative contribution of bryophytes to plant diversity, primary productivity, and ecosystem functioning increases towards colder climates. Bryophytes respond to environmental changes at the species level, but because bryophyte species are relatively difficult to identify, they are often lumped into one functional group. Consequently, bryophyte function remains poorly resolved. Here, we explore how higher resolution of bryophyte functional diversity can be encouraged and implemented in tundra ecological studies. We briefly review previous bryophyte functional classifications and the roles of bryophytes in tundra ecosystems and their susceptibility to environmental change. Based on shoot morphology and colony organization, we then propose twelve easily distinguishable bryophyte functional groups. To illustrate how bryophyte functional groups can help elucidate variation in bryophyte effects and responses, we compiled existing data on water holding capacity, a key bryophyte trait. Although plant functional groups can mask potentially high interspecific and intraspecific variability, we found better separation of bryophyte functional group means compared with previous grouping systems regarding water holding capacity. This suggests that our bryophyte functional groups truly represent variation in the functional roles of bryophytes in tundra ecosystems. Lastly, we provide recommendations to improve the monitoring of bryophyte community changes in tundra study sites.
  •  
16.
  • Lett, Signe, 1986- (författare)
  • Mosses as mediators of climate change : implications for tree seedling establishment in the tundra
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Alpine and arctic tree line expansion depends on the establishment of tree seedlings above the current tree line, which is expected to occur with climate warming. However, tree lines often fail to respond to higher temperatures. Other environmental factors are therefore likely important for tree seedling establishment. Above the tree line, establishing seedlings encounter existing vegetation such as bryophytes, which often dominate in arctic and alpine tundra. Bryophytes modify their environment in various ways and may mediate climate change effects on establishing tree seedlings, and with that tree line expansion. The aim of this thesis was to understand if and how the environment, in particular bryophytes, mediates the impact of climate change on tree seedling establishment at the alpine and arctic tree line. This was explored by reviewing literature on tree seedling establishment at alpine and arctic tree lines globally. In addition, tree seedling survival and growth of Betula pubescens and Pinus sylvestris were assessed experimentally. Here, individuals were planted into mono-specific mats of different bryophytes species and exposed to warming and different precipitation regimes. The literature review revealed that besides from temperature, tree seedling establishment is affected by a wide range of abiotic and biotic factors including water, snow, nutrients, light, disturbance and surrounding vegetation. Furthermore the review revealed that for example vegetation can change tree seedling responses to climate change. The experiments showed that especially tree seedling survival was adversely affected by the presence of bryophytes and that the impacts of bryophytes were larger than those of the climate treatments. Seedling growth, on the other hand, was not hampered by the presence of bryophytes, which is in line with earlier findings that seedling survival, growth and seed germination do not respond similarly to changes in environmental conditions. Moreover, we found several indications that vegetation above the tree line, including bryophytes, mediated tree seedling responses to warming and precipitation or snow cover. This thesis shows that temperature alone should not be used to predict future tree seedling establishment above the alpine and arctic tree line and that extrapolations from climate envelope models could strongly over or under estimate tree line responses to warming. This underlines the value of multi-factorial studies for understanding the interplay between warming and other environmental factors and their effects on tree seedling establishment across current tree lines.
  •  
17.
  • Plue, Jan, et al. (författare)
  • Buffering effects of soil seed banks on plant community composition in response to land use and climate
  • 2020
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 30:1, s. 128-139
  • Tidskriftsartikel (refereegranskat)abstract
    • AimClimate and land use are key determinants of biodiversity, with past and ongoing changes posing serious threats to global ecosystems. Unlike most other organism groups, plant species can possess dormant life‐history stages such as soil seed banks, which may help plant communities to resist or at least postpone the detrimental impact of global changes. This study investigates the potential for soil seed banks to achieve this.Location Europe.Time period 1978–2014.Major taxa studied Flowering plantsMethodsUsing a space‐for‐time/warming approach, we study plant species richness and composition in the herb layer and the soil seed bank in 2,796 community plots from 54 datasets in managed grasslands, forests and intermediate, successional habitats across a climate gradient.ResultsSoil seed banks held more species than the herb layer, being compositionally similar across habitats. Species richness was lower in forests and successional habitats compared to grasslands, with annual temperature range more important than mean annual temperature for determining richness. Climate and land‐use effects were generally less pronounced when plant community richness included seed bank species richness, while there was no clear effect of land use and climate on compositional similarity between the seed bank and the herb layer.Main conclusionsHigh seed bank diversity and compositional similarity between the herb layer and seed bank plant communities may provide a potentially important functional buffer against the impact of ongoing environmental changes on plant communities. This capacity could, however, be threatened by climate warming. Dormant life‐history stages can therefore be important sources of diversity in changing environments, potentially underpinning already observed time‐lags in plant community responses to global change. However, as soil seed banks themselves appear, albeit less, vulnerable to the same changes, their potential to buffer change can only be temporary, and major community shifts may still be expected.
  •  
18.
  • Plue, Jan, et al. (författare)
  • European soil seed bank communities across a climate and land-cover gradient
  • 2020
  • Annan publikationabstract
    • This is the data set used for the publication Buffering effects of soil seed banks on plant community composition in response to land use and climate, published in the journal Global Ecology and Biogeography.Aim.Climate and land use are key determinants of biodiversity, with past and ongoing changes posing serious threats to global ecosystems. Unlike most other organism groups, plant species can possess dormant life-history stages such as soil seed banks, which may help plant communities to resist or at least postpone the detrimental impact of global changes. This study investigates the potential for soil seed banks to achieve this.Location. EuropeTime period. 1978 – 2014Major taxa studied. Flowering plantsMethods.Using a space-for-time/warming approach, we study plant species richness and composition in the herb layer and the soil seed bank in 2796 community plots from 54 datasets in managed grasslands, forests and intermediate, successional habitats across a climate gradient.Results.Soil seed banks held more species than the herb layer, being compositionally similar across habitats. Species richness was lower in forests and successional habitats compared to grasslands, with annual temperature range more important than mean annual temperature for determining richness. Climate and land use effects were generally less pronounced when plant community richness included seed bank species richness, while there was no clear effect of land use and climate on compositional similarity between the seed bank and the herb layer.Main conclusions.High seed bank diversity and compositional similarity between the herb layer and seed bank plant communities may provide a potentially important functional buffer against the impact of ongoing environmental changes on plant communities. This capacity could, however, be threatened by climate warming. Dormant life-history stages can therefore be important sources of diversity in changing environments, potentially underpinning already observed time-lags in plant community responses to global change. However, as soil seed banks themselves appear, albeit less, vulnerable to the same changes, their potential to buffer change can only be temporary, and major community shifts may still be expected.MethodsThis dataset is a collection of 41 published and 5 unpublished data sets, consisting of 2796 plots with corresponding seed bank and herb layer community data. Sampling effort varied across data sets, but involved sampling of the soil and subsequent germination trials in a greenhouse to determine seed bank composition. Herb layer communities were determined by the identification of plants in relevés. Please consult the readme file and published paper for further details.Usage NotesPlease contact database or individual data set authors for further information and collaboration when using the data set or any of its component parts. Please also note that some of these data sets have already been published alongside their orginal papers. Finally, please cite data and datasets according to community standards.
  •  
19.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
20.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: ECOLOGY LETTERS. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
21.
  • Skarpaas, Olav, et al. (författare)
  • Biomass partitioning in grassland plants along independent gradients in temperature and precipitation
  • 2016
  • Ingår i: Perspectives in plant ecology, evolution and systematics. - : Elsevier BV. - 1433-8319 .- 1618-0437. ; 19, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • How plants allocate biomass to different parts strongly affects vegetation dynamics and ecosystem processes and services such as productivity and carbon storage. We tested the hypothesis that plant size explains the majority of variation in the size of plant parts (as predicted by allometric partitioning theory, APT) and that additional variation is explained by optimal responses for a given individual reproductive state and environment (as predicted by optimal partitioning theory, OPT) for alpine-lowland species pairs from three genera of grassland plants (Veronica, Viola and Carex) sampled along orthogonal gradients in temperature and precipitation. We found general patterns of allometric scaling (allometric exponents) of roots, stems, leaves and flowers, more or less as predicted by APT, and these patterns remained fairly constant across temperature and precipitation gradients. In contrast, basic allocation (allometric coefficients) was clearly related to climate, such as less allocation to leaves but more to roots, stems and flowers with increasing temperatures, in accordance with OPT. Furthermore, our results show that basic allocation is related to habitat affinity (alpine, lowland) and individual life-history states (reproductive or not) and that there is greater variability in small plants, which suggests that biomass partitioning theory should consider both the life-history and ecology of small plants to accurately predict climate-related grassland plant allocation and its implications.
  •  
22.
  •  
23.
  • Vandvik, Vigdis, et al. (författare)
  • Plant traits and associated data from a warming experiment, a seabird colony, and along elevation in Svalbard
  • 2023
  • Ingår i: Scientific Data. - 2052-4463. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is warming at a rate four times the global average, while also being exposed to other global environmental changes, resulting in widespread vegetation and ecosystem change. Integrating functional trait-based approaches with multi-level vegetation, ecosystem, and landscape data enables a holistic understanding of the drivers and consequences of these changes. In two High Arctic study systems near Longyearbyen, Svalbard, a 20-year ITEX warming experiment and elevational gradients with and without nutrient input from nesting seabirds, we collected data on vegetation composition and structure, plant functional traits, ecosystem fluxes, multispectral remote sensing, and microclimate. The dataset contains 1,962 plant records and 16,160 trait measurements from 34 vascular plant taxa, for 9 of which these are the first published trait data. By integrating these comprehensive data, we bridge knowledge gaps and expand trait data coverage, including on intraspecific trait variation. These data can offer insights into ecosystem functioning and provide baselines to assess climate and environmental change impacts. Such knowledge is crucial for effective conservation and management in these vulnerable regions.
  •  
24.
  • Vandvik, Vigdis, et al. (författare)
  • Seed banks are biodiversity reservoirs : species-area relationships above versus below ground
  • 2016
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 125:2, s. 218-228
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil seed banks offer plants the possibility to disperse through time. This has implications for population and community dynamics, as recognised by ecological and evolutionary theory. In contrast, the conservation and restoration literature often find seed banks to be depauperate, weedy and without much conservation value or restoration potential. One explanation for these contrasting views might lie in a systematic bias in the sampling of seed banks versus established plant communities. We use the species-area relationship as a tool to assess and compare the per-area species richness and spatial structuring of the diversity of the established plant community versus soil seed banks. To allow this direct comparison we extensively survey the species-area relationship of the vegetation and underlying seed bank of a grassland community across twelve sites spanning regional bioclimatic gradients. We also compile a global dataset of established vegetation and seed banks from published sources. We find that seed banks have consistently higher intercepts and slopes of the relationship, and hence higher diversity at any given spatial scale, than the vegetation both in the field and literature study. This is consistent across habitat types, climate gradients, and biomes. Similarity indices are commonly used to compare vegetation and seed bank, and we find that sampling effort (% of the vegetation area sampled for seed bank) was the strongest predictor of vegetation-seed bank similarity for both the SOrensen (R-2 = 0.70) and the Raup-Crick (R-2 = 0.25) index. Our study suggests that the perception that seed banks are intrinsically less diverse than established plant communities has been based more on inadequate sampling than on biological reality. Across a range of ecosystems and climatic settings, we find high diversity in seed banks relative to the established community, suggesting potentially important roles of seed banks in population dynamics and diversity maintenance.
  •  
25.
  • Wasof, Safaa, et al. (författare)
  • Disjunct populations of European vascular plant species keep the same climatic niches
  • 2015
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 24:12, s. 1401-1412
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been separated for thousands of years. Location European Alps and Fennoscandia. Methods Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly disjunct populations and 358 species having either a contiguous or a patchy distribution with distant populations. First, we used species distribution modelling to test for a region effect on each species' climatic niche. Second, we quantified niche overlap and shifts in niche width (i.e. ecological amplitude) and position (i.e. ecological optimum) within a bi-dimensional climatic space. Results Only one species (3%) of the 31 species with strictly disjunct populations and 58 species (16%) of the 358 species with distant populations showed a region effect on their climatic niche. Niche overlap was higher for species with strictly disjunct populations than for species with distant populations and highest for arctic-alpine species. Climatic niches were, on average, wider and located towards warmer and wetter conditions in the Alps. Main conclusion Climatic niches seem to be generally conserved between populations that are separated between the Alps and Fennoscandia and have probably been so for 10,000-15,000 years. Therefore, the basic assumption of species distribution models that a species' climatic niche is constant in space and time-at least on time scales 104 years or less-seems to be largely valid for arctic-alpine plants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25
Typ av publikation
tidskriftsartikel (19)
konferensbidrag (3)
annan publikation (1)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Vandvik, Vigdis (24)
Klanderud, Kari (7)
Bruun, Hans Henrik (6)
Althuizen, Inge H. J ... (5)
Decocq, Guillaume (5)
Meineri, Eric (4)
visa fler...
Andersson, Roy (4)
Lenoir, Jonathan (4)
Førland, Oddfrid (4)
Måren, Inger E. (4)
Enquist, Brian J. (4)
von Oppen, Jonathan (4)
Svenning, Jens-Chris ... (4)
Gya, Ragnhild (4)
Halbritter, Aud H. (4)
Geange, Sonya R. (4)
Hylander, Kristoffer (3)
Hermy, Martin (3)
Plue, Jan (3)
Auffret, Alistair G. (3)
Alatalo, Juha M. (3)
Michelsen, Anders (3)
Pakeman, Robin J. (3)
Armbruster, W. Scott (3)
Telford, Richard J. (3)
Sarneel, Judith M. (3)
Lee, Hanna (3)
Marteinsdottir, Bryn ... (3)
Auestad, Inger (3)
Basto, Sofía (3)
Grandin, Ulf (3)
Jacquemyn, Hans (3)
Kalamees, Rein (3)
Koch, Marcus A. (3)
Wagner, Markus (3)
Bekker, Renée M. (3)
Jankowska-Błaszczuk, ... (3)
Thompson, Ken (3)
Ejrnæs, Rasmus (3)
Milbau, Ann (3)
Birks, H. John B. (3)
Carbognani, Michele (3)
Petraglia, Alessandr ... (3)
Jónsdóttir, Ingibjör ... (3)
Lembrechts, Jonas J. (3)
Chacón-Labella, Juli ... (3)
Boakye, Mickey (3)
Farfan-Rios, William (3)
Middleton, Sara L. (3)
Strydom, Tanya (3)
visa färre...
Lärosäte
Stockholms universitet (10)
Umeå universitet (7)
Lunds universitet (5)
Sveriges Lantbruksuniversitet (5)
Göteborgs universitet (3)
Högskolan Väst (3)
visa fler...
Linköpings universitet (2)
IVL Svenska Miljöinstitutet (2)
Högskolan i Halmstad (1)
Högskolan i Gävle (1)
visa färre...
Språk
Engelska (24)
Norska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (19)
Samhällsvetenskap (4)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy