SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vangansbeke Pieter) "

Sökning: WFRF:(Vangansbeke Pieter)

  • Resultat 1-25 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Pauw, Karen, et al. (författare)
  • Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges
  • 2021
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 109:7, s. 2629-2648
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest biodiversity world-wide is affected by climate change, habitat loss and fragmentation, and today 20% of the forest area is located within 100 m of a forest edge. Still, forest edges harbour a substantial amount of terrestrial biodiversity, especially in the understorey. The functional and phylogenetic diversity of forest edges have never been studied simultaneously at a continental scale, in spite of their importance for the forests' functioning and for communities' resilience to future change.We assessed nine metrics of taxonomic, phylogenetic and functional diversity of understorey plant communities in 225 plots spread along edge-to-interior gradients in deciduous forests across Europe. We then derived the relative effects and importance of edaphic, stand and landscape conditions on the diversity metrics.Here, we show that taxonomic, phylogenetic and functional diversity metrics respond differently to environmental conditions. We report an increase in functional diversity in plots with stronger microclimatic buffering, in spite of their lower taxonomic species richness. Additionally, we found increased taxonomic species richness at the forest edge, but in forests with intermediate and high openness, these communities had decreased phylogenetic diversity.Functional and phylogenetic diversity revealed complementary and important insights in community assembly mechanisms. Several environmental filters were identified as potential drivers of the patterns, such as a colder macroclimate and less buffered microclimate for functional diversity. For phylogenetic diversity, edaphic conditions were more important. Interestingly, plots with lower soil pH had decreased taxonomic species richness, but led to increased phylogenetic diversity, challenging the phylogenetic niche conservatism concept.Synthesis. Taxonomic, phylogenetic and functional diversity of understorey communities in forest edges respond differently to environmental conditions, providing insight into different community assembly mechanisms and their interactions. Therefore, it is important to look beyond species richness with phylogenetic and functional diversity approaches when focusing on forest understorey biodiversity.
  •  
2.
  • Sanczuk, Pieter, et al. (författare)
  • Small scale environmental variation modulates plant defence syndromes of understorey plants in deciduous forests of Europe
  • 2021
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 30:1, s. 205-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Variation in plant defence traits has been frequently assessed along large-scale macroclimatic clines. In contrast, local-scale changes in the environment have recently been proposed to also modulate plant defence traits. Yet, the relative importance of drivers at both scales has never been tested. We aimed to quantify the relative importance of environmental drivers inherent to large and small spatial scales on the physical and chemical defence and tolerance to herbivory in understorey plant species of deciduous forests of Europe.Location: Deciduous forests in Europe.Time period: Present.Major taxa studied: Forest understorey plants.Methods: We sampled four typical ancient forest herbs (Anemone nemorosa, Oxalis acetosella, Deschampsia cespitosa, Milium effusum) along small and large spatial scale gradients (those driven by latitude, elevation, forest management and distance to the forest edge), and analysed a suite of nine constitutively expressed traits associated with overall resistance to herbivory, and their multivariate response to environmental clines.Results: Although our study included a large gradient in macroclimate, we found variation in the local environment at small spatial scales (i.e. soil nutrient concentration and forest structural complexity) to be more important in predicting plant resistance to herbivory.Main conclusions: In addition to macroclimatic conditions, subtle differences in forest microclimate and soil characteristics also played a major role in modulating plant defence phenotypes. These findings highlight the importance of the local habitat structure and environmental conditions in modulating plant resistance to herbivory.
  •  
3.
  • De Lombaerde, Emiel, et al. (författare)
  • Maintaining forest cover to enhance temperature buffering under future climate change
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 810
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970–2000) and to project future (2060–2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060–2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.
  •  
4.
  • De Pauw, Karen, et al. (författare)
  • Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming
  • 2022
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 233:1, s. 219-235
  • Tidskriftsartikel (refereegranskat)abstract
    • Forests harbour large spatiotemporal heterogeneity in canopy structure. This variation drives the microclimate and light availability at the forest floor. So far, we do not know how light availability and sub-canopy temperature interactively mediate the impact of macroclimate warming on understorey communities.We therefore assessed the functional response of understorey plant communities to warming and light addition in a full factorial experiment installed in temperate deciduous forests across Europe along natural microclimate, light and macroclimate gradients. Furthermore, we related these functional responses to the species’ life-history syndromes and thermal niches.We found no significant community responses to the warming treatment. The light treatment, however, had a stronger impact on communities, mainly due to responses by fast-colonizing generalists and not by slow-colonizing forest specialists. The forest structure strongly mediated the response to light addition and also had a clear impact on functional traits and total plant cover.The effects of short-term experimental warming were small and suggest a time-lag in the response of understorey species to climate change. Canopy disturbance, for instance due to drought, pests or logging, has a strong and immediate impact and particularly favours generalists in the understorey in structurally complex forests.
  •  
5.
  • Gasperini, Cristina, et al. (författare)
  • Edge effects on the realised soil seed bank along microclimatic gradients in temperate European forests
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 798, s. 149373-149373
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the crucial role of the seed bank in forest conservation and dynamics, the effects of forest edge microclimate and climate warming on germination responses from the forest seed bank are still almost unknown. Here, we investigated edge effects on the realised seed bank and seedling community in two types of European temperate deciduous forest, one in the Oceanic and one in the Mediterranean climatic region. Responses in terms of seedling density, diversity, species composition and functional type of the seed bank at the forest edge and interior were examined along latitudinal, elevational and stand structural gradients by means of soil translocation experiments. Moreover, we translocated soil samples from high to low elevation forests in the two regions, thus performing a warming simulation. Density, species diversity and mortality of the seedlings varied with region and elevation.Seedling density also differed between forest edge and interior position, while seedling cover mainly depended on forest structure. Both the edge and interior forest seed bank contained a high proportion of generalist species. In Belgium, a more homogeneous seed bank was found at the forest edge and interior, while in Italy compositional and ecological differences were larger: at the forest edge, more light and less moisture demanding seedling communities developed, with a higher proportion of generalists compared to the interior. In both regions, the upland-to-lowland translocation experiment revealed effects of warming on forest seed banks with thermophilization of the realised communities. Moreover, edge conditions shifted the seedling composition towards more light-demanding communities. The establishment of more light and warm-adapted species from the seed bank could in the long term alter the aboveground vegetation composition, with communities becoming progressively richer in light-demanding generalists and poorer in forest specialists.
  •  
6.
  • Gasperini, Cristina, et al. (författare)
  • Soil seed bank responses to edge effects in temperate European forests
  • 2022
  • Ingår i: Global Ecology and Biogeography. - Stockholm : Wiley. - 1466-822X .- 1466-8238. ; 31:9, s. 1877-1893
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: The amount of forest edges is increasing globally due to forest fragmentation and land-use changes. However, edge effects on the soil seed bank of temperate forests are still poorly understood. Here, we assessed edge effects at contrasting spatial scales across Europe and quantified the extent to which edges can preserve the seeds of forest specialist plants.Location: Temperate European deciduous forests along a 2,300-km latitudinal gradient.Time period: 2018-2021.Major taxa studied: Vascular plants.Methods: Through a greenhouse germination experiment, we studied how edge effects alter the density, diversity, composition and functionality of forest soil seed banks in 90 plots along different latitudes, elevations and forest management types. We also assessed which environmental conditions drive the seed bank responses at the forest edge versus interior and looked at the relationship between the seed bank and the herb layer species richness.Results: Overall, 10,108 seedlings of 250 species emerged from the soil seed bank. Seed density and species richness of generalists (species not only associated with forests) were higher at edges compared to interiors, with a negative influence of C : N ratio and litter quality. Conversely, forest specialist species richness did not decline from the interior to the edge. Also, edges were compositionally, but not functionally, different from interiors. The correlation between the seed bank and the herb layer species richness was positive and affected by microclimate.Main conclusions: Our results underpin how edge effects shape species diversity and composition of soil seed banks in ancient forests, especially increasing the proportion of generalist species and thus potentially favouring a shift in community composition. However, the presence of many forest specialists suggests that soil seed banks still play a key role in understorey species persistence and could support the resilience of our fragmented forests.
  •  
7.
  • Govaert, Sanne, et al. (författare)
  • Edge influence on understorey plant communities depends on forest management
  • 2020
  • Ingår i: Journal of Vegetation Science. - : Wiley. - 1100-9233 .- 1654-1103. ; 31:2, s. 281-292
  • Tidskriftsartikel (refereegranskat)abstract
    • Questions: Does the influence of forest edges on plant species richness and composition depend on forest management? Do forest specialists and generalists show contrasting patterns?Location: Mesic, deciduous forests across Europe.Methods: Vegetation surveys were performed in forests with three management types (unthinned, thinned 5-10 years ago and recently thinned) along a macroclimatic gradient from Italy to Norway. In each of 45 forests, we established five vegetation plots along a south-facing edge-to-interior gradient (n = 225). Forest specialist, generalist and total species richness, as well as evenness and proportion of specialists, were tested as a function of the management type and distance to the edge while accounting for several environmental variables (e.g. landscape composition and soil characteristics). Magnitude and distance of edge influence were estimated for species richness per management type.Results: Greatest total species richness was found in thinned forests. Edge influence on generalist plant species richness was contingent on the management type, with the smallest decrease in species richness from the edge-to-interior in unthinned forests. In addition, generalist richness increased with the proportion of forests in the surrounding landscape and decreased in forests dominated by tree species that cast more shade. Forest specialist species richness, however, was not affected by management type or distance to the edge, and only increased with pH and increasing proportion of forests in the landscape.Conclusions: Forest thinning affects the plant community composition along edge-to-interior transects of European forests, with richness of forest specialists and generalists responding differently. Therefore, future studies should take the forest management into account when interpreting edge-to-interior because both modify the microclimate, soil processes and deposition of polluting aerosols. This interaction is key to predict the effects of global change on forest plants in landscapes characterized by the mosaic of forest patches and agricultural land that is typical for Europe.
  •  
8.
  • Govaert, Sanne, et al. (författare)
  • Trait–micro-environment relationships of forest herb communities across Europe
  • 2024
  • Ingår i: Global Ecology and Biogeography. - 1466-822X .- 1466-8238. ; 33:2, s. 286-302
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: The microclimate and light conditions on the forest floor are strongly modified by tree canopies. Therefore, we need to better consider the micro-environment when quantifying trait–environment relationships for forest understorey plants. Here, we quantify relationships between micro-environmental conditions and plant functional traits at the community level, including intraspecific trait variation, and their relationship with microclimate air temperature, light and soil properties.Location: Deciduous temperate forests across Europe.Time period: 2018.Major taxa studied: Herbaceous vegetation.Methods: We sampled 225 plots across 15 regions along four complementary gradients capturing both macro- and microclimatic conditions including latitude, elevation, forest management and distance to forest edges. We related the community-weighted mean of five plant functional traits (plant height, specific leaf area [SLA], plant carbon [C], plant nitrogen [N] and plant C:N ratio) across 150 vascular plant species to variation in local microclimate air temperature, light and soil properties. We tested the effect of accounting for intraspecific variation in trait–environment relationships and performed variation partitioning to identify major drivers of trait variation.Results: Microclimate temperature, light availability and soil properties were all important predictors of community-weighted mean functional traits. When light availability and variation in temperature were higher, the herb community often consisted of taller plants with a higher C:N ratio. In more productive environments (e.g. with high soil nitrogen availability), the community was dominated by individuals with resource-acquisitive traits: high SLA and N but low C:N. Including intraspecific trait variation increased the strength of the trait–micro-environment relationship, and increased the importance of light availability.Main conclusions: The trait–environment relationships were much stronger when the micro-environment and intraspecific trait variation were considered. By locally steering light availability and temperature, forest managers can potentially impact the functional signature of the forest herb-layer community.
  •  
9.
  • Meeussen, Camille, et al. (författare)
  • Drivers of carbon stocks in forest edges across Europe
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 759
  • Tidskriftsartikel (refereegranskat)abstract
    • Forests play a key role in global carbon cycling and sequestration. However, the potential for carbon drawdown is affected by forest fragmentation and resulting changes in microclimate, nutrient inputs, disturbance and productivity near edges. Up to 20% of the global forested area lieswithin 100 m of an edge and, even in temperate forests, knowledge on howedge conditions affect carbon stocks and howfar this influence penetrates into forest interiors is scarce. Here we studied carbon stocks in the aboveground biomass, forest floor and the mineral topsoil in 225 plots in deciduous forest edges across Europe and tested the impact of macroclimate, nitrogen deposition and smaller-grained drivers (e.g. microclimate) on these stocks. Total carbon and carbon in the aboveground biomass stock were on average 39% and 95% higher at the forest edge than 100 m into the interior. The increase in the aboveground biomass stock close to the edgewas mainly related to enhanced nitrogen deposition. No edge influence was found for stocks in the mineral topsoil. Edge-to-interior gradients in forest floor carbon changed across latitude: carbon stocks in the forest floor were higher near the edge in southern Europe. Forest floor carbon decreased with increasing litter quality (i.e. high decomposition rate) and decreasing plant area index, whereas higher soil temperatures negatively affected the mineral top soil carbon. Based on high-resolution forest fragmentation maps, we estimate that the additional carbon stored in deciduous forest edges across Europe amounts to not less than 183 Tg carbon, which is equivalent to the storage capacity of 1 million ha of additional forest. This study underpins the importance of including edge influences when quantifying the carbon stocks in temperate forests and stresses the importance of preserving natural forest edges and small forest patches with a high edge-to-interior surface area.
  •  
10.
  • Meeussen, Camille, et al. (författare)
  • Microclimatic edge-to-interior gradients of European deciduous forests
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 311
  • Tidskriftsartikel (refereegranskat)abstract
    • Global forest cover is heavily fragmented. Due to high edge-to-surface ratios in small forest patches, a large proportion of forests is affected by edge influences involving steep microclimatic gradients. Although forest edges are important ecotones and account for 20% of the global forested area, it remains unclear how biotic and abiotic drivers affect forest edge microclimates at the continental scale. Here we report soil and air temperatures measured in 225 deciduous forest plots across Europe for two years. Forest stands were situated along a latitudinal gradient and subject to a varying vegetation structure as quantified by terrestrial laser scanning. In summer, the average offset of air and soil temperatures in forest edges compared to temperatures outside the forest amounted to -2.8 degrees C and -2.3 degrees C, respectively. Edge-to-interior summer temperature gradients were affected by the macroclimate and edge structure. From the edge onwards, larger offsets were observed in dense forest edges and in warmer, southern regions. In open forests and northern Europe, altered microclimatic conditions extended deeper into the forest and gradients were steeper. Canopy closure and plant area index were important drivers of summer offsets in edges, whereas in winter also the forest-floor biomass played a key role. Using high-resolution maps, we estimated that approximately 10% of the European broadleaved forests would be affected by altered temperature regimes. Gradual transition zones between forest and adjacent lands are valuable habitat types for edge species. However, if cool and moist forest interiors are desired, then (i) dense and complex forest edges, (ii) an undisturbed forested buffer zone of at least 12.5 m deep and (iii) trees with a high shade casting ability could all contribute to an increased offset. These findings provide important guidelines to mitigate edge influences, to protect typical forest microclimates and to adapt forest management to climate change.
  •  
11.
  • Sanczuk, Pieter, et al. (författare)
  • Microclimate and forest density drive plant population dynamics under climate change
  • 2023
  • Ingår i: Nature Climate Change. - 1758-678X .- 1758-6798. ; 13:8, s. 840-847
  • Tidskriftsartikel (refereegranskat)abstract
    • Macroclimatic changes are impacting ecosystems worldwide. However, a large portion of terrestrial species live under conditions where impacts of macroclimate change are buffered, such as in the shade of trees, and how this buffering impacts future below-canopy biodiversity redistributions at the continental scale is unknown. Here we show that shady forest floors due to dense tree canopies mitigate severe warming impacts on forest biodiversity, while canopy opening amplifies macroclimate change impacts. A cross-continental transplant experiment in five contrasting biogeographical areas combined with experimental heating and irradiation treatments was used to parametize 25-m resolution mechanistic demographic distribution models and project the current and future distributions of 12 common understorey plant species, considering the effects of forest microclimate and forest cover density. These results highlight microclimates and forest density as powerful tools for forest managers and policymakers to shelter forest biodiversity from climate change.The impacts of microclimate on future plant population dynamics are poorly understood. The authors use large-scale transplant climate change experiments to show the contribution of forest microclimates to population dynamics and project the distributions of 12 common understorey plants.
  •  
12.
  • Vanneste, Thomas, et al. (författare)
  • Trade-offs in biodiversity and ecosystem services between edges and interiors in European forests
  • 2024
  • Ingår i: Nature Ecology & Evolution. - 2397-334X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest biodiversity and ecosystem services are hitherto predominantly quantified in forest interiors, well away from edges. However, these edges also represent a substantial proportion of the global forest cover. Here we quantified plant biodiversity and ecosystem service indicators in 225 plots along forest edge-to-interior transects across Europe. We found strong trade-offs: phylogenetic diversity (evolutionary measure of biodiversity), proportion of forest specialists, decomposition and heatwave buffering increased towards the interior, whereas species richness, nectar production potential, stemwood biomass and tree regeneration decreased. These trade-offs were mainly driven by edge-to-interior structural differences. As fragmentation continues, recognizing the role of forest edges is crucial for integrating biodiversity and ecosystem service considerations into sustainable forest management and policy.
  •  
13.
  • Wei, Liping, et al. (författare)
  • Using warming tolerances to predict understory plant responses to climate change
  • 2024
  • Ingår i: Global Change Biology. - 1354-1013 .- 1365-2486. ; 30:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is pushing species towards and potentially beyond their critical thermal limits. The extent to which species can cope with temperatures exceeding their critical thermal limits is still uncertain. To better assess species' responses to warming, we compute the warming tolerance (ΔTniche) as a thermal vulnerability index, using species' upper thermal limits (the temperature at the warm limit of their distribution range) minus the local habitat temperature actually experienced at a given location. This metric is useful to predict how much more warming species can tolerate before negative impacts are expected to occur. Here we set up a cross-continental transplant experiment involving five regions distributed along a latitudinal gradient across Europe (43° N–61° N). Transplant sites were located in dense and open forests stands, and at forest edges and in interiors. We estimated the warming tolerance for 12 understory plant species common in European temperate forests. During 3 years, we examined the effects of the warming tolerance of each species across all transplanted locations on local plant performance, in terms of survival, height, ground cover, flowering probabilities and flower number. We found that the warming tolerance (ΔTniche) of the 12 studied understory species was significantly different across Europe and varied by up to 8°C. In general, ΔTniche were smaller (less positive) towards the forest edge and in open stands. Plant performance (growth and reproduction) increased with increasing ΔTniche across all 12 species. Our study demonstrated that ΔTniche of understory plant species varied with macroclimatic differences among regions across Europe, as well as in response to forest microclimates, albeit to a lesser extent. Our findings support the hypothesis that plant performance across species decreases in terms of growth and reproduction as local temperature conditions reach or exceed the warm limit of the focal species.
  •  
14.
  • Auffret, Alistair G., et al. (författare)
  • More warm-adapted species in soil seed banks than in herb layer plant communities across Europe
  • 2023
  • Ingår i: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 111:5, s. 1009-1020
  • Tidskriftsartikel (refereegranskat)abstract
    • Responses to climate change have often been found to lag behind the rate of warming that has occurred. In addition to dispersal limitation potentially restricting spread at leading range margins, the persistence of species in new and unsuitable conditions is thought to be responsible for apparent time-lags. Soil seed banks can allow plant communities to temporarily buffer unsuitable environmental conditions, but their potential to slow responses to long-term climate change is largely unknown. As local forest cover can also buffer the effects of a warming climate, it is important to understand how seed banks might interact with land cover to mediate community responses to climate change. We first related species-level seed bank persistence and distribution-derived climatic niches for 840 plant species. We then used a database of plant community data from grasslands, forests and intermediate successional habitats from across Europe to investigate relationships between seed banks and their corresponding herb layers in 2763 plots in the context of climate and land cover. We found that species from warmer climates and with broader distributions are more likely to have a higher seed bank persistence, resulting in seed banks that are composed of species with warmer and broader climatic distributions than their corresponding herb layers. This was consistent across our climatic extent, with larger differences (seed banks from even warmer climates relative to vegetation) found in grasslands. Synthesis. Seed banks have been shown to buffer plant communities through periods of environmental variability, and in a period of climate change might be expected to contain species reflecting past, cooler conditions. Here, we show that persistent seed banks often contain species with relatively warm climatic niches and those with wide climatic ranges. Although these patterns may not be primarily driven by species’ climatic adaptations, the prominence of such species in seed banks might still facilitate climate-driven community shifts. Additionally, seed banks may be related to ongoing trends regarding the spread of widespread generalist species into natural habitats, while cool-associated species may be at risk from both short- and long-term climatic variability and change. 
  •  
15.
  • De Frenne, Pieter, et al. (författare)
  • Forest microclimates and climate change : Importance, drivers and future research agenda
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:11, s. 2279-2297
  • Forskningsöversikt (refereegranskat)abstract
    • Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.
  •  
16.
  • De Frenne, Pieter, et al. (författare)
  • Plant movements and climate warming : intraspecific variation in growth responses to nonlocal soils
  • 2014
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 202:2, s. 431-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal environments can establish in nonlocal sites. We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional range, and reflecting movement scenarios of up to 1600km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. We found significantly positive effects of the difference between the temperature of the sites of seed and soil collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently colder' soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant performance. Our results suggest that abiotic and biotic soil characteristics can shape climate change-driven plant movements by affecting growth of nonlocal migrants, a mechanism which should be integrated into predictions of future range shifts.
  •  
17.
  • De Pauw, Karen, et al. (författare)
  • Nutrient-demanding and thermophilous plants dominate urban forest-edge vegetation across temperate Europe
  • 2024
  • Ingår i: Journal of Vegetation Science. - 1100-9233 .- 1654-1103. ; 35:1
  • Tidskriftsartikel (refereegranskat)abstract
    • QuestionsForests are highly fragmented across the globe. For urban forests in particular, fragmentation increases the exposure to local warming caused by the urban heat island (UHI) effect. We here aim to quantify edge effects on herbaceous understorey vegetation in urban forests, and test whether these effects interact with forest structural complexity.LocationWe set up a pan-European study at the continental scale including six urban forests in Zurich, Paris, Katowice, Brussels, Bremen, and Stockholm.MethodsWe recorded understorey plant communities from the edge towards the interior of urban forests. Within each urban forest, we studied edge-to-interior gradients in paired stands with differing forest structural complexity. Community composition was analysed based on species specialism, life form, light, nutrient, acidity and disturbance indicator values and species' thermal niches.ResultsWe found that herbaceous communities at urban forest edges supported more generalists and forbs but fewer ferns than in forests' interiors. A buffered summer microclimate proved crucial for the presence of fern species. The edge communities contained more thermophilous, disturbance-tolerant, nutrient-demanding and basiphilous plant species, a pattern strongly confirmed by corresponding edge-to-interior gradients in microclimate, soil and light conditions in the understorey. Additionally, plots with a lower canopy cover and higher light availability supported higher numbers of both generalists and forest specialists. Even though no significant interactions were found between the edge distance and forest structural complexity, opposing additive effects indicated that a dense canopy can be used to buffer negative edge effects.ConclusionThe urban environment poses a multifaceted filter on understorey plant communities which contributes to significant differences in community composition between urban forest edges and interiors. For urban biodiversity conservation and the buffering of edge effects, it will be key to maintain dense canopies near urban forest edges. The urban environment poses a multifaceted filter on understorey plant communities which contributes to significant differences in community composition between urban forest edges and interiors. For urban biodiversity conservation and the buffering of edge effects, it will be key to maintain dense canopies near urban forest edges.image
  •  
18.
  • De Pauw, Karen, et al. (författare)
  • The urban heat island accelerates litter decomposition through microclimatic warming in temperate urban forests
  • 2024
  • Ingår i: Urban Ecosystems. - 1083-8155 .- 1573-1642.
  • Tidskriftsartikel (refereegranskat)abstract
    • Forests worldwide are experiencing fragmentation, with especially important consequences for ecosystems bordering urbanized areas. Urban forests are exposed to local warming due to the urban heat island which affects their biodiversity and ecosystem functioning. A key ecosystem function affecting carbon and nutrient cycling in forests is litter decomposition, a process driven by the local microclimate. Thus, our aim was to clarify the impact of the urban heat island on litter decomposition in urban forests. We studied soil microclimate and litter decomposition in six urban forests across Europe and along local gradients from the urban forest edge to the interior. To quantify decomposition independent from local forest composition and litter quality, we used standardized green tea and rooibos tea litterbags. We determined the role of the soil microclimate and other environmental drivers for litter decomposition. Secondly, we assessed effects of edge proximity and landscape context on the soil microclimate. Soil characteristics were only driving green tea and not rooibos tea decomposition. On the contrary, higher soil temperatures resulted in faster rates of litter decomposition for both green and rooibos tea and were related to the proximity to the forest edge and the proportion of built-up area in the landscape. Via structural equation modelling we detected cascading effects of the urban heat island on litter decomposition. Such changes in litter decomposition have the potential to alter the soil food web, nutrient cycling and carbon drawdown in urban forests, and could result in significant interactions between urbanisation and ongoing climate change.
  •  
19.
  • De Pauw, Karen, et al. (författare)
  • Urban forest microclimates across temperate Europe are shaped by deep edge effects and forest structure
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 341
  • Tidskriftsartikel (refereegranskat)abstract
    • The urban heat island (UHI) causes strong warming of cities and their urban forests worldwide. Especially urban forest edges are strongly exposed to the UHI effect, which could impact urban forest biodiversity and functioning. However, it is not known to what extent the UHI effect alters edge-to-interior microclimatic gradients within urban forests and whether this depends on the forests' structure.Here we quantified gradients of air temperature, relative air humidity and vapour pressure deficits (VPD) along urban forest edge-to-interior transects with contrasting stand structures in six major cities across Europe. We performed continuous hourly microclimate measurements for two consecutive years and analysed the magnitude and depth of edge effects, as well as forest structural drivers of microclimatic variation.Compared to edge studies in rural temperate forests, we found that edge effects reached deeper into urban forests, at least up to 50 m. Throughout the year, urban forest edges were warmer and drier compared to forest interiors, with the largest differences occurring during summer and daytime. Not only maximum, but also mean and minimum temperatures were higher at the urban forest edge up to large edge distances (at least 85 m). Denser forests with a higher plant area index buffered high air temperatures and VPDs from spring to autumn.We conclude that urban forest edges are unique ecotones with specific microclimates shaped by the UHI effect. Both forest edges and interiors showed increased buffering capacities with higher forest canopy density. We advocate for the conservation and expansion of urban forests which can buffer increasingly frequent and intense climate extremes. To this end, urban forest managers are encouraged to aim for multi-layered dense forest canopies and consider edge buffer zones of at least 50 m wide.
  •  
20.
  • Díaz-Calafat, Joan, et al. (författare)
  • From broadleaves to conifers : The effect of tree composition and density on understory microclimate across latitudes
  • 2023
  • Ingår i: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 341
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest canopies buffer the macroclimate and thus play an important role in mitigating climate-warming impacts on forest ecosystems. Despite the importance of the tree layer for understory microclimate buffering, our knowledge about the effects of forest structure, composition and their interactions with macroclimate is limited, especially in mixtures of conifers and broadleaves. Here we studied five mixed forest stands along a 1800 km latitudinal gradient covering a 7°C span in mean annual temperature. In each of these forests we established 40 plots (200 in total), in which air and soil temperatures were measured continuously for at least one year. The plots were located across gradients of forest density and broadleaved proportions (i.e. from open to closed canopies, and from 100% conifer to 100% broadleaved tree dominance). Air minimum, mean and maximum temperature offsets (i.e. difference between macroclimate and microclimate) and soil mean temperature offsets were calculated for the coldest and warmest months. Forest structure, and especially forest density, was the key determinant of understory temperatures. However, the absolute and relative importance of the proportion of broadleaves and forest density differed largely between response variables. Forest density ranged from being independent of, to interacting with, tree species composition. The effect of these two variables was independent of the macroclimate along our latitudinal gradient. Temperature, precipitation, snow depth and wind outside forests affected understory temperature buffering. Finally, we found that the scale at which the overstory affects soil microclimate approximated 6-7 m, whereas for air microclimate this was at least 10 m. These findings have implications for biodiversity conservation and forest management in a changing climate, as they facilitate the projection of understory temperatures in scenarios where both forest structure and macroclimate are dynamic. This is especially relevant given the global importance of ongoing forest conversion from conifers to broadleaves, and vice versa.
  •  
21.
  • Haesen, Stef, et al. (författare)
  • ForestClim : Bioclimatic variables for microclimate temperatures of European forests
  • 2023
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 29:11, s. 2886-2892
  • Tidskriftsartikel (refereegranskat)abstract
    • Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 x 25 m2 resolution.
  •  
22.
  • Kemppinen, Julia, et al. (författare)
  • Microclimate, an important part of ecology and biogeography
  • 2024
  • Ingår i: GLOBAL ECOLOGY AND BIOGEOGRAPHY. - 1466-822X .- 1466-8238. ; 33:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeographyWe highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem managementMicroclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate scienceWe showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
  •  
23.
  • Lembrechts, Jonas J., et al. (författare)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Tidskriftsartikel (refereegranskat)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
24.
  • Meeussen, Ccamille, et al. (författare)
  • Initial oak regeneration responses to experimental warming along microclimatic and macroclimatic gradients
  • 2022
  • Ingår i: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 24:5, s. 745-757
  • Tidskriftsartikel (refereegranskat)abstract
    • Quercus spp. are one of the most important tree genera in temperate deciduous forests in terms of biodiversity, economic and cultural perspectives.However, natural regeneration of oaks, depending on specific environmental conditions, is still not sufficiently understood.Oak regeneration dynamics are impacted by climate change, but these climate impacts will depend on local forest management and light and temperature conditions.
  •  
25.
  • Meeussen, Camille, et al. (författare)
  • Structural variation of forest edges across Europe
  • 2020
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 462
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest edges are interfaces between forest interiors and adjacent land cover types. They are important elements in the landscape with almost 20% of the global forest area located within 100 m of the edge. Edges are structurally different from forest interiors, which results in unique edge influences on microclimate, functioning and biodiversity. These edge influences have been studied for multiple decades, yet there is only limited information available on how forest edge structure varies at the continental scale, and which factors drive this potential structural diversity. Here we quantified the structural variation along 45 edge-to-interior transects situated along latitudinal, elevational and management gradients across Europe. We combined state-of-the-art terrestrial laser scanning and conventional forest inventory techniques to investigate how the forest edge structure (e.g. plant area index, stem density, canopy height and foliage height diversity) varies and which factors affect this forest edge structural variability. Macroclimate, management, distance to the forest edge and tree community composition all influenced the forest edge structural variability and interestingly we detected interactive effects of our predictors as well. We found more abrupt edge-to-interior gradients (i.e. steeper slopes) in the plant area index in regularly thinned forests. In addition, latitude, mean annual temperature and humidity all affected edge-to-interior gradients in stem density. We also detected a simultaneous impact of both humidity and management, and humidity and distance to the forest edge, on the canopy height and foliage height diversity. These results contribute to our understanding of how environmental conditions and management shape the forest edge structure. Our findings stress the need for site-specific recommendations on forest edge management instead of generalized recommendations as the macroclimate substantially influences the forest edge structure. Only then, the forest edge microclimate, functioning and biodiversity can be conserved at a local scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 28
Typ av publikation
tidskriftsartikel (27)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (28)
Författare/redaktör
Vangansbeke, Pieter (28)
De Frenne, Pieter (26)
Lenoir, Jonathan (24)
Meeussen, Camille (22)
Plue, Jan (20)
Govaert, Sanne (19)
visa fler...
Spicher, Fabien (19)
Verheyen, Kris (18)
Brunet, Jörg (17)
Vanneste, Thomas (17)
Hedwall, Per-Ola (17)
De Pauw, Karen (17)
Orczewska, Anna (16)
Diekmann, Martin (15)
Selvi, Federico (14)
Zellweger, Florian (13)
Iacopetti, Giovanni (13)
Cousins, Sara A. O. (12)
Sanczuk, Pieter (12)
Ponette, Quentin (10)
Graae, Bente J. (9)
Bollmann, Kurt (9)
Calders, Kim (9)
De Lombaerde, Emiel (9)
Depauw, Leen (9)
Gasperini, Cristina (8)
Lindmo, Sigrid (8)
Decocq, Guillaume (7)
Verbeeck, Hans (6)
Aalto, Juha (5)
Hylander, Kristoffer (5)
Luoto, Miska (5)
Van Meerbeek, Koenra ... (5)
Haesen, Stef (5)
Uria Diez, Jaime (5)
Lembrechts, Jonas J. (4)
Vermeir, Pieter (4)
Naaf, Tobias (3)
Greiser, Caroline, 1 ... (3)
Cousins, Sara A. O., ... (3)
Ashcroft, Michael B. (3)
Hampe, Arndt (3)
Klinges, David (3)
Frey, David (3)
Cousins, Sara, 1965- (3)
Máliš, František (3)
Kopecký, Martin (3)
Liira, Jaan (3)
Nijs, Ivan (3)
Wild, Jan (3)
visa färre...
Lärosäte
Stockholms universitet (26)
Sveriges Lantbruksuniversitet (19)
IVL Svenska Miljöinstitutet (4)
Göteborgs universitet (2)
Umeå universitet (1)
Högskolan Väst (1)
visa fler...
Linköpings universitet (1)
Linnéuniversitetet (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (28)
Lantbruksvetenskap (16)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy