SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vankova G.) "

Sökning: WFRF:(Vankova G.)

  • Resultat 1-25 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahdida, C., et al. (författare)
  • The magnet of the scattering and neutrino detector for the SHiP experiment at CERN
  • 2020
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 15:01
  • Tidskriftsartikel (refereegranskat)abstract
    • The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.
  •  
2.
  • Ahdida, C., et al. (författare)
  • Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks
  • 2019
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHIP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of O(10(6)). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution.
  •  
3.
  • Ahdida, C., et al. (författare)
  • Sensitivity of the SHiP experiment to dark photons decaying to a pair of charged particles
  • 2021
  • Ingår i: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 81:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Dark photons are hypothetical massive vector particles that could mix with ordinary photons. The simplest theoretical model is fully characterised by only two parameters: the mass of the dark photon m(gamma)D and its mixing parameter with the photon, epsilon. The sensitivity of the SHiP detector is reviewed for dark photons in the mass range between 0.002 and 10 GeV. Different productionmechanisms are simulated, with the dark photons decaying to pairs of visible fermions, including both leptons and quarks. Exclusion contours are presented and compared with those of past experiments. The SHiP detector is expected to have a unique sensitivity for m. D ranging between 0.8 and 3.3(-0.5)(+0.2) GeV, and epsilon(2) ranging between 10(-11) and 10(-17).
  •  
4.
  • Ahdida, C., et al. (författare)
  • Sensitivity of the SHiP experiment to Heavy Neutral Leptons
  • 2019
  • Ingår i: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy Neutral Leptons (HNLs) are hypothetical particles predicted by many extensions of the Standard Model. These particles can, among other things, explain the origin of neutrino masses, generate the observed matter-antimatter asymmetry in the Universe and provide a dark matter candidate. The SHiP experiment will be able to search for HNLs produced in decays of heavy mesons and travelling distances ranging between O(50 m) and tens of kilometers before decaying. We present the sensitivity of the SHiP experiment to a number of HNL's benchmark models and provide a way to calculate the SHiP's sensitivity to HNLs for arbitrary patterns of flavour mixings. The corresponding tools and data files are also made publicly available.
  •  
5.
  • Ahdida, C., et al. (författare)
  • The experimental facility for the Search for Hidden Particles at the CERN SPS
  • 2019
  • Ingår i: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1-3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to O(10) GeV/c(2) in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background.
  •  
6.
  • Ahdida, C., et al. (författare)
  • Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment
  • 2022
  • Ingår i: Journal of Instrumentation. - : IOP Publishing. - 1748-0221. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved.
  •  
7.
  • Abdellaoui, G., et al. (författare)
  • Meteor studies in the framework of the JEM-EUSO program
  • 2017
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 143, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.
  •  
8.
  • Ahdida, C., et al. (författare)
  • Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target
  • 2020
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 1011muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27 +/- 0.07)x1011protons on target was recorded. This amounts to approximatively 1% of a SHiP spill.
  •  
9.
  • Ahdida, C., et al. (författare)
  • Sensitivity of the SHiP experiment to light dark matter
  • 2021
  • Ingår i: Journal of High Energy Physics (JHEP). - : Springer Nature. - 1126-6708 .- 1029-8479. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • Dark matter is a well-established theoretical addition to the Standard Model supported by many observations in modern astrophysics and cosmology. In this context, the existence of weakly interacting massive particles represents an appealing solution to the observed thermal relic in the Universe. Indeed, a large experimental campaign is ongoing for the detection of such particles in the sub-GeV mass range. Adopting the benchmark scenario for light dark matter particles produced in the decay of a dark photon, with αD = 0.1 and mA′ = 3mχ, we study the potential of the SHiP experiment to detect such elusive particles through its Scattering and Neutrino detector (SND). In its 5-years run, corresponding to 2 · 1020 protons on target from the CERN SPS, we find that SHiP will improve the current limits in the mass range for the dark matter from about 1 MeV to 300 MeV. In particular, we show that SHiP will probe the thermal target for Majorana candidates in most of this mass window and even reach the Pseudo-Dirac thermal relic.
  •  
10.
  • Abdellaoui, G., et al. (författare)
  • First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere
  • 2018
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25(th) of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.
  •  
11.
  • Ahdida, C., et al. (författare)
  • The SHiP experiment at the proposed CERN SPS Beam Dump Facility
  • 2022
  • Ingår i: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 82:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm { \,m}$$\end{document} long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\mathrm {GeV}$$\end{document} protons, the experiment aims at profiting from the 4x1019\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 10<^>{19}$$\end{document} protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {\,MeV\!/}c<^>2}$$\end{document} up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end.
  •  
12.
  • Milstead, David A., et al. (författare)
  • The active muon shield in the SHiP experiment
  • 2017
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. An essential task for the experiment is to keep the Standard Model background level to less than 0.1 event after 2 x 10(20) protons on target. In the beam dump, around 10(11) muons will be produced per second. The muon rate in the spectrometer has to be reduced by at least four orders of magnitude to avoid muon-induced combinatorial background. A novel active muon shield is used to magnetically deflect the muons out of the acceptance of the spectrometer. This paper describes the basic principle of such a shield, its optimization and its performance.
  •  
13.
  • De Angelis, A., et al. (författare)
  • Science with e-ASTROGAM A space mission for MeV-GeV gamma-ray astrophysics
  • 2018
  • Ingår i: Journal of High Energy Astrophysics. - : Elsevier. - 2214-4048 .- 2214-4056. ; 19, s. 1-106
  • Tidskriftsartikel (refereegranskat)abstract
    • e-ASTROGAM ('enhanced ASTROGAM') is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV - the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.
  •  
14.
  • Abele, H., et al. (författare)
  • Particle physics at the European Spallation Source
  • 2023
  • Ingår i: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 1023, s. 1-84
  • Forskningsöversikt (refereegranskat)abstract
    • Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world’s brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
  •  
15.
  • Aguilar, J., et al. (författare)
  • Search for Leptonic CP Violation with the ESSnuSBplus Project
  • 2024
  • Ingår i: Letters in High Energy Physics. - : Andromeda Publishing And Academic Services LTD. - 2632-2714.
  • Tidskriftsartikel (refereegranskat)abstract
    • ESSνSB is a design study for a next-generation long-baseline neutrino experiment that aims at the precise measurement of the CP-violating phase, δCP, in the leptonic sector at the second oscillation maximum. The conceptual design report published from the first phase of the project showed that after 10 years of data taking, more than 70% of the possible δCP range will be covered with 5σ C.L. to reject the no-CP-violation hypothesis. The expected value of δCP precision is smaller than 8◦ for all δCP values. The next phase of the project, the ESSνSB+, aims at using the intense muon flux produced together with neutrinos to measure the neutrino-nucleus cross-section, the dominant term of the systematic uncertainty, in the energy range of 0.2–0.6 GeV, using a Low Energy neutrinos from STORed Muons (LEnuSTORM) and a Low Energy Monitored Neutrino Beam (LEMNB) facilities.
  •  
16.
  • Aguilar, J., et al. (författare)
  • Study of nonstandard interactions mediated by a scalar field at the ESSnuSB experiment
  • 2024
  • Ingår i: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 109:11
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we study scalar mediator induced nonstandard interactions (SNSIs) in the context of the ESSnuSB experiment. In particular, we study the capability of ESSnuSB to put bounds on the SNSI parameters and also study the impact of SNSIs in the measurement of the leptonic CP phase δCP. Existence of SNSIs modifies the neutrino mass matrix and this modification can be expressed in terms of three diagonal real parameters (ηee, ημμ, and ηττ) and three off-diagonal complex parameters (ηeμ, ηeτ, and ημτ). Our study shows that the upper bounds on the parameters ημμ and ηττ depend upon how Δm312 is minimized in the theory. However, this is not the case when one tries to measure the impact of SNSIs on δCP. Further, we show that the CP sensitivity of ESSnuSB can be completely lost for certain values of ηee and ημτ for which the appearance channel probability becomes independent of δCP.
  •  
17.
  • Burgman, A., et al. (författare)
  • The ESSnuSB Design Study: Overview and Future Prospects
  • 2023
  • Ingår i: Universe. - : MDPI. - 2218-1997. ; 9:8
  • Forskningsöversikt (refereegranskat)abstract
    • ESSnuSB is a design study for an experiment to measure the CP violation in the leptonic sector at the second neutrino oscillation maximum using a neutrino beam driven by the uniquely powerful ESS linear accelerator. The reduced impact of systematic errors on sensitivity at the second maximum allows for a very precise measurement of the CP violating parameter. This review describes the fundamental advantages of measurement at the second maximum, the necessary upgrades to the ESS linac in order to produce a neutrino beam, the near and far detector complexes, and the expected physics reach of the proposed ESSnuSB experiment, concluding with the near future developments aimed at the project realization.
  •  
18.
  • Burgman, A., et al. (författare)
  • The European Spallation Source neutrino super-beam conceptual design report
  • 2022
  • Ingår i: The European Physical Journal Special Topics. - : Springer Nature. - 1951-6355 .- 1951-6401. ; 231:21, s. 3779-3955
  • Forskningsöversikt (refereegranskat)abstract
    • A design study, named ESSνSB for European Spallation Source neutrino Super Beam, has been carried out during the years 2018–2022 of how the 5 MW proton linear accelerator of the European Spallation Source under construction in Lund, Sweden, can be used to produce the world’s most intense long-baseline neutrino beam. The high beam intensity will allow for measuring the neutrino oscillations near the second oscillation maximum at which the CP violation signal is close to three times higher than at the first maximum, where other experiments measure. This will enable CP violation discovery in the leptonic sector for a wider range of values of the CP violating phase δCPδCP and, in particular, a higher precision measurement of δCPδCP. The present Conceptual Design Report describes the results of the design study of the required upgrade of the ESS linac, of the accumulator ring used to compress the linac pulses from 2.86 ms to 1.2 μs, and of the target station, where the 5 MW proton beam is used to produce the intense neutrino beam. It also presents the design of the near detector, which is used to monitor the neutrino beam as well as to measure neutrino cross sections, and of the large underground far detector located 360 km from ESS, where the magnitude of the oscillation appearance of νe from νμ is measured. The physics performance of the ESSνSB research facility has been evaluated demonstrating that after 10 years of data-taking, leptonic CP violation can be detected with more than 5 standard deviation significance over 70% of the range of values that the CP violation phase angle δCPδCP can take and that δCPδCP can be measured with a standard error less than 8° irrespective of the measured value of δCPδCP. These results demonstrate the uniquely high physics performance of the proposed ESSνSBESSνSB research facility.
  •  
19.
  • Burgman, A., et al. (författare)
  • Updated physics performance of the ESSnuSB experiment
  • 2021
  • Ingår i: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 81:12
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we present the physics performance of the ESSnuSB experiment in the standard three flavor scenario using the updated neutrino flux calculated specifically for the ESSnuSB configuration and updated migration matrices for the far detector. Taking conservative systematic uncertainties corresponding to a normalization error of 5% for signal and 10% for background, we find that there is 10 sigma (13 sigma) CP violation discovery sensitivity for the baseline option of 540 km (360 km) at delta(CP) = +/- 90 degrees. The corresponding fraction of delta(CP )for which CP violation can be discovered at more than 5 sigma is 70%. Regarding CP precision measurements, the 1 sigma error associated with delta(CP )= 0 degrees is around 5 degrees and with delta(CP )= -90 degrees is around 14 degrees (7 degrees) for the baseline option of 540 km (360 km). For hierarchy sensitivity, one can have 3 sigma sensitivity for 540 km baseline except delta(CP) = +/- 90 degrees and 5 sigma sensitivity for 360 km baseline for all values of delta(CP). The octant of theta(23) can be determined at 30 for the values of: theta(23) > 51 degrees (theta(23) < 42 degrees and theta(23) > 49 degrees) for baseline of 540 km (360 km). Regarding measurement precision of the atmospheric mixing parameters, the allowed values at 3 sigma are: 40 degrees < theta(23) < 52 degrees (42 degrees < theta(23) < 51.5 degrees) and 2.485 x 10(-3) eV(2) < Delta(2)(m31) < 2.545 x 10(-3) eV(2) (2.49x 10(-3 ) eV(2) < Delta(2)(m31) < 2.54 x 10(-3) eV(2)) for the baseline of 540 km (360 km).
  •  
20.
  • Antonova, M., et al. (författare)
  • Synchronization of the distributed readout frontend electronics of the Baby MIND detector
  • 2017
  • Ingår i: 2017 XXVI International Scientific Conference Electronics (ET). - : IEEE. - 9781538617533
  • Konferensbidrag (refereegranskat)abstract
    • Baby MIND is a new downstream muon range detector for the WGASCI experiment. This article discusses the distributed readout system and its timing requirements. The paper presents the design of the synchronization subsystem and the results of its test.
  •  
21.
  • Blondel, A., et al. (författare)
  • The SuperFGD Prototype charged particle beam tests
  • 2020
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 47r coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10 x 10 x 10 mm(3), providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920 x 560 x 1840 mm(3) volume. A prototype made of 24 x 8 x 48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons.
  •  
22.
  • Antonova, M., et al. (författare)
  • Baby MIND : a magnetized segmented neutrino detector for the WAGASCI experiment
  • 2017
  • Ingår i: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 12:07, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280’s measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.
  •  
23.
  • Antonova, M., et al. (författare)
  • Baby MIND : a magnetized segmented neutrino detector for the WAGASCI experiment
  • 2017
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. Anear detector complex (ND280) is located 280m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.
  •  
24.
  • Antonova, M., et al. (författare)
  • Proposal for characterization of muon spectrometers for neutrino beam lines with the Baby MIND
  • 2015
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Neutrino detectors based on state-of-the-art plastic scintillators read out with solid state photo-sensors, as well as new magnetization schemes, have been developed in the framework of AIDA. Meaningful size prototypes are under construction. In the framework of the CERN neutrino platform, we propose to test a Totally Active Scintillator Detector (TASD) and a prototype of a Magnetized Iron Neutrino Detector (MIND), called Baby MIND in the H8 beam line in 2016-2018. The design of the detectors and the purpose and plans for the beam tests are presented. An opportunity to use the Baby MIND detector in a real neutrino beam at JPARC for the measurement of the cross-section ratio between Water and scintillator (WAGASCI experiment) is described.
  •  
25.
  • Baussan, E., et al. (författare)
  • A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac
  • 2014
  • Ingår i: Nuclear Physics B. - : Elsevier BV. - 0550-3213 .- 1873-1562. ; 885, s. 127-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spoliation Source currently under construction in Lund, Sweden, to deliver, in parallel with the spoliation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spoliation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few mu s with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300-600 km from Lund will make it possible to discover leptonic CP violation at 5 sigma significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 sigma if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 30
Typ av publikation
tidskriftsartikel (25)
forskningsöversikt (3)
rapport (1)
konferensbidrag (1)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Bogomilov, M. (25)
Tsenov, R. (25)
Vankova-Kirilova, G. (23)
Khabibullin, M. (15)
Kudenko, Y. (15)
Mineev, O. (15)
visa fler...
Fukuda, T. (15)
Casolino, M. (11)
Korzenev, A. (11)
Brenner, Richard (10)
Silverstein, Samuel ... (10)
Betancourt, C. (10)
Campanelli, M. (10)
Golubkov, D. (10)
Hakobyan, H. (10)
Lopes, L. (10)
Mermod, P. (10)
Vannucci, F. (10)
Xella, S. (10)
Milstead, David A. (10)
Breton, D. (10)
Kuznetsova, E. (10)
Wurm, M. (10)
Petridis, K. (10)
Gorbunov, S. (10)
Rademakers, A. (10)
De Roeck, A. (10)
Bondarenko, K. (10)
Kadenko, I. (10)
Korol, I. (10)
Kovalenko, S. (10)
Sokolenko, A. (10)
Barker, G. J. (10)
Treille, D. (10)
Zaytsev, Yu (10)
Aoki, S. (10)
Atkin, E. (10)
Takahashi, S. (10)
Back, J.J. (10)
Nakano, T (10)
Skorokhvatov, M. (10)
Dijkstra, H (10)
Jacobsson, R. (10)
Golutvin, A (10)
Ratnikov, F (10)
Schmidt-Parzefall, W (10)
Wanke, R (10)
Blanco, A (10)
Fonte, P. (10)
Patel, M (10)
visa färre...
Lärosäte
Uppsala universitet (19)
Stockholms universitet (13)
Kungliga Tekniska Högskolan (9)
Lunds universitet (6)
Luleå tekniska universitet (5)
Karolinska Institutet (3)
visa fler...
Linköpings universitet (2)
Göteborgs universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (27)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy