SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Varghese C) "

Sökning: WFRF:(Varghese C)

  • Resultat 1-25 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Kaptoge, S., et al. (författare)
  • World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions
  • 2019
  • Ingår i: Lancet Global Health. - : Elsevier BV. - 2214-109X. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. Methods In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. Findings Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0.685 (95% CI 0 . 629-0 741) to 0.833 (0 . 783-0- 882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. Interpretation We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd.
  •  
10.
  •  
11.
  • Eratne, D., et al. (författare)
  • Cerebrospinal fluid neurofilament light chain differentiates primary psychiatric disorders from rapidly progressive, Alzheimer's disease and frontotemporal disorders in clinical settings
  • 2022
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:11, s. 2218-2233
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Many patients with cognitive and neuropsychiatric symptoms face diagnostic delay and misdiagnosis. We investigated whether cerebrospinal fluid (CSF) neurofilament light (NfL) and total-tau (t-tau) could assist in the clinical scenario of differentiating neurodegenerative (ND) from psychiatric disorders (PSY), and rapidly progressive disorders. Methods Biomarkers were examined in patients from specialist services (ND and PSY) and a national Creutzfeldt-Jakob registry (Creutzfeldt-Jakob disease [CJD] and rapidly progressive dementias/atypically rapid variants of common ND, RapidND). Results A total of 498 participants were included: 197 ND, 67 PSY, 161 CJD, 48 RapidND, and 20 controls. NfL was elevated in ND compared to PSY and controls, with highest levels in CJD and RapidND. NfL distinguished ND from PSY with 95%/78% positive/negative predictive value, 92%/87% sensitivity/specificity, 91% accuracy. NfL outperformed t-tau in most real-life clinical diagnostic dilemma scenarios, except distinguishing CJD from RapidND. Discussion We demonstrated strong generalizable evidence for the diagnostic utility of CSF NfL in differentiating ND from psychiatric disorders, with high accuracy.
  •  
12.
  •  
13.
  •  
14.
  • Nagaraja, Ch., et al. (författare)
  • Opening remarks
  • 2016
  • Konferensbidrag (refereegranskat)
  •  
15.
  •  
16.
  • D'Souza, K., et al. (författare)
  • Autotaxin-Lysophosphatidic Acid Signaling Contributed to Obesity-Induced Insulin Resistance in Muscle and Impairs Mitochondrial Metabolism
  • 2018
  • Ingår i: Journal of Lipid Research. - : American Society for Biochemistry and Molecular Biology. - 0022-2275 .- 1539-7262. ; 59:10, s. 1805-1817
  • Tidskriftsartikel (refereegranskat)abstract
    • Autotaxin (ATX) is an adipokine that generates the bioactive lipid, lysophosphatidic acid (LPA). ATX-LPA signaling has been implicated in diet-induced obesity and systemic insulin resistance. However, it remains unclear whether the ATX-LPA pathway influences insulin function and energy metabolism in target tissues, particularly skeletal muscle, the major site of insulin-stimulated glucose disposal. The objective of this study was to test whether the ATX-LPA pathway impacts tissue insulin signaling and mitochondrial metabolism in skeletal muscle during obesity. Male mice with heterozygous ATX deficiency (ATX +/-) were protected from obesity, systemic insulin resistance, and cardiomyocyte dysfunction following high-fat high-sucrose (HFHS) feeding. HFHS-fed ATX +/- mice also had improved insulin-stimulated AKT phosphorylation in white adipose tissue, liver, heart, and skeletal muscle. Preserved insulin-stimulated glucose transport in muscle from HFHS fed ATX +/- mice was associated with improved mitochondrial pyruvate oxidation in the absence of changes in fat oxidation and ectopic lipid accumulation. Similarly, incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function. Preserved insulin-stimulated glucose transport in muscle from HFHS fed ATX +/- mice was associated with improved mitochondrial pyruvate oxidation in the absence of changes in fat oxidation and ectopic lipid accumulation. Similarly, incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function. Preserved insulin-stimulated glucose transport in muscle from HFHS fed ATX +/- mice was associated with improved mitochondrial pyruvate oxidation in the absence of changes in fat oxidation and ectopic lipid accumulation. Similarly, incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function. incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function. incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function.
  •  
17.
  • Karthik, K. R. G., et al. (författare)
  • Physical and Electrical Properties of Single Zn2SnO4 Nanowires
  • 2011
  • Ingår i: Electrochemical and solid-state letters. - Pennington, NJ : Electrochemical Society. - 1099-0062 .- 1944-8775. ; 14:1, s. K5-K7
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrical characterizations of single Zn2SnO4 (ZTO) nanowire devices are presented. These include resistivity, mobility, and photosensing measurements. The resistivity and the mobility of the Zn2SnO4 nanowire were measured to be 5.6 cm and 0.2 cm2/Vs, respectively. These values were found to be strongly dependent on the amount of electron-donating defects and less dependent on the thickness of the nanowires. An increase in the resistivity when changing the ambient atmosphere is observed. This change is caused by defect states lying in the bandgap, as shown by photoluminescence. The results imply the potential of ZTO nanowires as phototransistors and other photosensitive devices. © 2010 The Electrochemical Society.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Babrzadeh, F., et al. (författare)
  • Collinearity of protease mutations in HIV-1 samples with high-level protease inhibitor class resistance
  • 2013
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 68:2, s. 414-418
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To determine whether pan-protease inhibitor (PI)-resistant virus populations are composed predominantly of viruses with resistance to all PIs or of diverse virus populations with resistance to different subsets of PIs. Methods: We performed deep sequencing of plasma virus samples from nine patients with high-level genotypic and/or phenotypic resistance to all licensed PIs. The nine virus samples had a median of 12 PI resistance mutations by direct PCR Sanger sequencing. Results: For each of the nine virus samples, deep sequencing showed that each of the individual viruses within a sample contained nearly all of the mutations detected by Sanger sequencing. Indeed, a median of 94.9% of deep sequence reads had each of the PI resistance mutations present as a single chromatographic peak in the Sanger sequence. A median of 5.0% of reads had all but one of the Sanger mutations that were not part of an electrophoretic mixture. Conclusions: The collinearity of PI resistance mutations in the nine virus samples demonstrated that pan-PI-resistant viruses are able to replicate in vivo despite their highly mutated protease enzymes. We hypothesize that the marked collinearity of PI resistance mutations in pan-PI-resistant virus populations results from the unique requirements for multi-PI resistance and the extensive cross-resistance conferred by many of the accessory PI resistance mutations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy