SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Veropalumbo A.) "

Sökning: WFRF:(Veropalumbo A.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pezzotta, A., et al. (författare)
  • Euclid preparation XLI. Galaxy power spectrum modelling in real space
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 687
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the accuracy of the perturbative galaxy bias expansion in view of the forthcoming analysis of the Euclid spectroscopic galaxy samples. We compare the performance of a Eulerian galaxy bias expansion using state-of-the-art prescriptions from the effective field theory of large-scale structure (EFTofLSS) with a hybrid approach based on Lagrangian perturbation theory and high-resolution simulations. These models are benchmarked against comoving snapshots of the flagship I N-body simulation at z = (0.9, 1.2, 1.5, 1.8), which have been populated with H alpha galaxies leading to catalogues of millions of objects within a volume of about 58 h(-3) Gpc(3). Our analysis suggests that both models can be used to provide a robust inference of the parameters (h, omega c) in the redshift range under consideration, with comparable constraining power. We additionally determine the range of validity of the EFTofLSS model in terms of scale cuts and model degrees of freedom. From these tests, it emerges that the standard third-order Eulerian bias expansion - which includes local and non-local bias parameters, a matter counter term, and a correction to the shot-noise contribution - can accurately describe the full shape of the real-space galaxy power spectrum up to the maximum wavenumber of k(max) = 0.45 h Mpc(-1), and with a measurement precision of well below the percentage level. Fixing either of the tidal bias parameters to physically motivated relations still leads to unbiased cosmological constraints, and helps in reducing the severity of projection effects due to the large dimensionality of the model. We finally show how we repeated our analysis assuming a volume that matches the expected footprint of Euclid, but without considering observational effects, such as purity and completeness, showing that we can get constraints on the combination (h, omega c) that are consistent with the fiducial values to better than the 68% confidence interval over this range of scales and redshifts.
  •  
2.
  • Contarini, S., et al. (författare)
  • Euclid : cosmological forecasts from the void size function
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • The Euclid mission - with its spectroscopic galaxy survey covering a sky area over 15 000 deg(2) in the redshift range 0.9 < z < 1.8 - will provide a sample of tens of thousands of cosmic voids. This paper thoroughly explores for the first time the constraining power of the void size function on the properties of dark energy (DE) from a survey mock catalogue, the official Euclid Flagship simulation. We identified voids in the Flagship light-cone, which closely matches the features of the upcoming Euclid spectroscopic data set. We modelled the void size function considering a state-of-the art methodology: we relied on the volume-conserving (Vdn) model, a modification of the popular Sheth & van de Weygaert model for void number counts, extended by means of a linear function of the large-scale galaxy bias. We found an excellent agreement between model predictions and measured mock void number counts. We computed updated forecasts for the Euclid mission on DE from the void size function and provided reliable void number estimates to serve as a basis for further forecasts of cosmological applications using voids. We analysed two different cosmological models for DE: the first described by a constant DE equation of state parameter, w, and the second by a dynamic equation of state with coefficients w(0) and w(a). We forecast 1 sigma errors on w lower than 10% and we estimated an expected figure of merit (FoM) for the dynamical DE scenario FoM(w0,wa) = 17 when considering only the neutrino mass as additional free parameter of the model. The analysis is based on conservative assumptions to ensure full robustness, and is a pathfinder for future enhancements of the technique. Our results showcase the impressive constraining power of the void size function from the Euclid spectroscopic sample, both as a stand-alone probe, and to be combined with other Euclid cosmological probes.
  •  
3.
  • Pierre, M., et al. (författare)
  • The XXL survey : First results and future
  • 2017
  • Ingår i: Astronomical Notes - Astronomische Nachrichten. - : Wiley-VCH Verlagsgesellschaft. - 0004-6337 .- 1521-3994. ; 338:2-3, s. 334-341
  • Tidskriftsartikel (refereegranskat)abstract
    • The XXL survey currently covers two 25 deg(2) patches with XMM observations of similar to 10 ks. We summarize the scientific results associated with the first release of the XXL dataset, which occurred in mid-2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z < 2) cluster, (z < 4) active galactic nuclei (AGN), and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-lambda observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters, and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z > 1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy