SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vesala Timo) "

Sökning: WFRF:(Vesala Timo)

  • Resultat 1-25 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lappalainen, Hanna K., et al. (författare)
  • Pan-Eurasian Experiment (PEEX) : towards a holistic understanding of the feedbacks and interactions in the land-atmosphere-ocean-society continuum in the northern Eurasian region
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:22, s. 14421-14461
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern Eurasian regions and Arctic Ocean will very likely undergo substantial changes during the next decades. The Arctic-boreal natural environments play a crucial role in the global climate via albedo change, carbon sources and sinks as well as atmospheric aerosol production from biogenic volatile organic compounds. Furthermore, it is expected that global trade activities, demographic movement, and use of natural resources will be increasing in the Arctic regions. There is a need for a novel research approach, which not only identifies and tackles the relevant multi-disciplinary research questions, but also is able to make a holistic system analysis of the expected feedbacks. In this paper, we introduce the research agenda of the Pan-Eurasian Experiment (PEEX), a multi-scale, multi-disciplinary and international program started in 2012 (https://www.atm.helsinki.fi/peex/). PEEX sets a research approach by which large-scale research topics are investigated from a system perspective and which aims to fill the key gaps in our understanding of the feedbacks and interactions between the land-atmosphereaquatic-society continuum in the northern Eurasian region. We introduce here the state of the art for the key topics in the PEEX research agenda and present the future prospects of the research, which we see relevant in this context.
  •  
2.
  • Chang, Kuang Yu, et al. (författare)
  • Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 2266-2266
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.
  •  
3.
  • Erkkilä, Kukka Maaria, et al. (författare)
  • Methane and carbon dioxide fluxes over a lake : Comparison between eddy covariance, floating chambers and boundary layer method
  • 2018
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 15:2, s. 429-445
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwaters bring a notable contribution to the global carbon budget by emitting both carbon dioxide (CO2) and methane (CH4) to the atmosphere. Global estimates of freshwater emissions traditionally use a wind-speed-based gas transfer velocity, kCC (introduced by Cole and Caraco, 1998), for calculating diffusive flux with the boundary layer method (BLM). We compared CH4 and CO2 fluxes from BLM with kCC and two other gas transfer velocities (kTE and kHE), which include the effects of water-side cooling to the gas transfer besides shear-induced turbulence, with simultaneous eddy covariance (EC) and floating chamber (FC) fluxes during a 16-day measurement campaign in September 2014 at Lake Kuivajärvi in Finland. The measurements included both lake stratification and water column mixing periods. Results show that BLM fluxes were mainly lower than EC, with the more recent model kTE giving the best fit with EC fluxes, whereas FC measurements resulted in higher fluxes than simultaneous EC measurements. We highly recommend using up-to-date gas transfer models, instead of kCC, for better flux estimates. BLM CO2 flux measurements had clear differences between daytime and night-time fluxes with all gas transfer models during both stratified and mixing periods, whereas EC measurements did not show a diurnal behaviour in CO2 flux. CH4 flux had higher values in daytime than night-time during lake mixing period according to EC measurements, with highest fluxes detected just before sunset. In addition, we found clear differences in daytime and night-time concentration difference between the air and surface water for both CH4 and CO2. This might lead to biased flux estimates, if only daytime values are used in BLM upscaling and flux measurements in general. FC measurements did not detect spatial variation in either CH4 or CO2 flux over Lake Kuivajärvi. EC measurements, on the other hand, did not show any spatial variation in CH4 fluxes but did show a clear difference between CO2 fluxes from shallower and deeper areas. We highlight that while all flux measurement methods have their pros and cons, it is important to carefully think about the chosen method and measurement interval, as well as their effects on the resulting flux.
  •  
4.
  • Flechard, Chris R., et al. (författare)
  • Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
  • 2020
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:6, s. 1583-1620
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of atmospheric reactive nitrogen (N-r) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of N-r deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet N-r deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and N-r inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3- leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BAS-FOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm(-2) yr(-1) at total wet + dry inorganic N-r deposition rates (N-dep) of 0.3 to 4.3 gNm(-2) yr(-1) and from -4 to 361 g Cm-2 yr(-1) at N-dep rates of 0.1 to 3.1 gNm(-2) yr(-1) in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated N-dep where N-r leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N-2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3- were on average 27%(range 6 %-54 %) of N-dep at sites with N-dep < 1 gNm(-2) yr(-1) versus 65% (range 35 %-85 %) for N-dep > 3 gNm(-2) yr(-1). Such large levels of N-r loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with N-r deposition up to 2-2.5 gNm(-2) yr(-1), with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP/GPP ratio). At elevated N-dep levels (> 2.5 gNm(-2) yr(-1)), where inorganic N-r losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate N-dep levels was partly the result of geographical cross-correlations between N-dep and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. N-dep.
  •  
5.
  • Golub, Malgorzata, et al. (författare)
  • Diel, seasonal, and inter-annual variation in carbon dioxide effluxes from lakes and reservoirs
  • 2023
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 18:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Accounting for temporal changes in carbon dioxide (CO2) effluxes from freshwaters remains a challenge for global and regional carbon budgets. Here, we synthesize 171 site-months of flux measurements of CO2 based on the eddy covariance method from 13 lakes and reservoirs in the Northern Hemisphere, and quantify dynamics at multiple temporal scales. We found pronounced sub-annual variability in CO2 flux at all sites. By accounting for diel variation, only 11% of site-months were net daily sinks of CO2. Annual CO2 emissions had an average of 25% (range 3%-58%) interannual variation. Similar to studies on streams, nighttime emissions regularly exceeded daytime emissions. Biophysical regulations of CO2 flux variability were delineated through mutual information analysis. Sample analysis of CO2 fluxes indicate the importance of continuous measurements. Better characterization of short- and long-term variability is necessary to understand and improve detection of temporal changes of CO2 fluxes in response to natural and anthropogenic drivers. Our results indicate that existing global lake carbon budgets relying primarily on daytime measurements yield underestimates of net emissions.
  •  
6.
  • Heiskanen, Jouni, et al. (författare)
  • The Integrated Carbon Observation System in Europe
  • 2022
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 103:3, s. 855-872
  • Tidskriftsartikel (refereegranskat)abstract
    • Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2C above preindustrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers' decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
  •  
7.
  •  
8.
  • Junninen, Heikki, et al. (författare)
  • Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests
  • 2022
  • Ingår i: Communications Earth and Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosols and their interaction with clouds constitute the largest uncertainty in estimating the radiative forcing affecting the climate system. Secondary aerosol formation is responsible for a large fraction of the cloud condensation nuclei in the global atmosphere. Wetlands are important to the budgets of methane and carbon dioxide, but the potential role of wetlands in aerosol formation has not been investigated. Here we use direct atmospheric sampling at the Siikaneva wetland in Finland to investigate the emission of methane and volatile organic compounds, and subsequently formed atmospheric clusters and aerosols. We find that terpenes initiate stronger atmospheric new particle formation than is typically observed over boreal forests and that, in addition to large emissions of methane which cause a warming effect, wetlands also have a cooling effect through emissions of these terpenes. We suggest that new wetlands produced by melting permafrost need to be taken into consideration as sources of secondary aerosol particles when estimating the role of increasing wetland extent in future climate change.
  •  
9.
  • Kasurinen, Ville, et al. (författare)
  • Latent heat exchange in the boreal and arctic biomes
  • 2014
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 20:11, s. 3439-3456
  • Forskningsöversikt (refereegranskat)abstract
    • In this study latent heat flux (E) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control E in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated E of different ecosystem types under meteorological conditions at one site. Values of E varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that E is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of E as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling.
  •  
10.
  • Knox, Sara H., et al. (författare)
  • FLUXNET-CH4 Synthesis Activity : Objectives, Observations, and Future Directions
  • 2019
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 100:12, s. 2607-2632
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH4) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH4 flux measurements globally, initial results comparing CH4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH4 fluxes across sites ranged from -0.2 +/- 0.02 g C m(-2) yr(-1) for an upland forest site to 114.9 +/- 13.4 g C m(-2) yr(-1) for an estuarine freshwater marsh, with fluxes exceeding 40 g C m(-2) yr(-1) at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH4 flux across wetland sites globally. Water table position was positively correlated with annual CH4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH4 estimates due to gap-filling and random errors were on average +/- 1.6 g C m(-2) yr(-1) at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH4 flux database, the controls on ecosystem CH4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH4 emissions.
  •  
11.
  • Korrensalo, Aino, et al. (författare)
  • Small spatial variability in methane emission measured from a wet patterned boreal bog
  • 2018
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 15:6, s. 1749-1761
  • Tidskriftsartikel (refereegranskat)abstract
    • We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012-2014) using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux.The plant community types differed from each other in their water level, species composition, total leaf area (LAITOT) and leaf area of aerenchymatous plant species (LAIAER). Methane emissions ranged from-309 to 1254 mg m-2 d-1. Although methane fluxes increased with increasing peat temperature, LAITOT and LAIAER, they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes.Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAIAER and LAITOT in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.
  •  
12.
  • Korrensalo, Aino, et al. (författare)
  • Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:2, s. 257-269
  • Tidskriftsartikel (refereegranskat)abstract
    • In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in the photosynthetic rate and leaf area of different species. Photosynthetic properties (light response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (PN and PG, respectively), which were summed to express ecosystem-level PN and PG. The ecosystem-level PG was compared with a gross primary production (GPP) estimate derived from eddy covariance (EC) measurements. Species areal cover, rather than differences in photosynthetic properties, determined the species with the highest PG of both vascular plants and Sphagna. Species-specific contributions to the ecosystem PG varied over the growing season, which, in turn, determined the seasonal variation in ecosystem PG. The upscaled growing season PG estimate, 230 g C m-2, agreed well with the GPP estimated by the EC (243 g C m-2). Sphagna were superior to vascular plants in ecosystem-level PG throughout the growing season but had a lower PN. PN results indicated that areal cover of the species, together with their differences in photosynthetic parameters, shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that functional diversity, i.e., the presence of plant groups with different seasonal timing and efficiency of photosynthesis, may increase the stability of C sinks of boreal bogs.
  •  
13.
  • Kulmala, Liisa, et al. (författare)
  • H2O and CO2 fluxes at the floor of a boreal pine forest
  • 2008
  • Ingår i: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 60:2, s. 167-178
  • Tidskriftsartikel (refereegranskat)abstract
    • We measured H2O and CO2 fluxes at a boreal forest floor using eddy covariance (EC) and chamber methods. Maximum evapotranspiration measured with EC ranged from 1.5 to 2.0 mmol m(-2) s(-1) while chamber estimates depended substantially on the location and the vegetation inside the chamber. The daytime net CO2 exchange measured with EC (0-2 mu mol m(-2) s(-1)) was of the same order as measured with the chambers. The nocturnal net CO2 exchange measured with the chambers ranged from 4 to 7 mu mol m(-2) s(-1) and with EC from similar to 4 to similar to 5 mu mol m(-2) s(-1) when turbulent mixing below the canopy was sufficient and the measurements were reliable. We studied gross photosynthesis by measuring the light response curves of the most common forest floor species and found the saturated rates of photosynthesis (P-max) to range from 0.008 (mosses) to 0.184 mu mol g(-1) s(-1) (blueberry). The estimated gross photosynthesis at the study site based on average leaf masses and the light response curves of individual plant species was 2-3 mu mol m(-2) s(-1). At the same time, we measured a whole community with another chamber and found maximum gross photosynthesis rates from 4 to 7 mu mol m(-2) s(-1).
  •  
14.
  • Kulmala, Markku, et al. (författare)
  • CO2-induced terrestrial climate feedback mechanism : From carbon sink to aerosol source and back
  • 2014
  • Ingår i: Boreal environment research. - 1239-6095 .- 1797-2469. ; 19, s. 122-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Feedbacks mechanisms are essential components of our climate system, as they either increase or decrease changes in climate-related quantities in the presence of external forcings. In this work, we provide the first quantitative estimate regarding the terrestrial climate feedback loop connecting the increasing atmospheric carbon dioxide concentration, changes in gross primary production (GPP) associated with the carbon uptake, organic aerosol formation in the atmosphere, and transfer of both diffuse and global radiation. Our approach was to combine process-level understanding with comprehensive, long-term field measurement data set collected from a boreal forest site in southern Finland. Our best estimate of the gain in GPP resulting from the feedback is 1.3 (range 1.02-1.5), which is larger than the gains of the few atmospheric chemistry-climate feedbacks estimated using large-scale models. Our analysis demonstrates the power of using comprehensive field measurements in investigating the complicated couplings between the biosphere and atmosphere on one hand, and the need for complementary approaches relying on the combination of field data, satellite observations model simulations on the other hand.
  •  
15.
  • Kulmala, Markku, et al. (författare)
  • Opinion : The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:23, s. 14949-14971
  • Tidskriftsartikel (refereegranskat)abstract
    • To be able to meet global grand challenges (climate change; biodiversity loss; environmental pollution; scarcity of water, food and energy supplies; acidification; deforestation; chemicalization; pandemics), which all are closely interlinked with each other, we need comprehensive open data with proper metadata, along with open science. The large data sets from ground-based in situ observations, ground and satellite remote sensing, and multiscale modeling need to be utilized seamlessly. In this opinion paper, we demonstrate the power of the SMEAR (Station for Measuring Earth surface-Atmosphere Relations) concept via several examples, such as detection of new particle formation and the particles' subsequent growth, quantifying atmosphere-ecosystem feedback loops, and combining comprehensive observations with emergency science and services, as well as studying the effect of COVID-19 restrictions on different air quality and climate variables. The future needs and the potential of comprehensive observations of the environment are summarized.
  •  
16.
  • Launiainen, Samuli, et al. (författare)
  • Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?
  • 2016
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 22:12, s. 4096-4113
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (Gs), water- and light-use efficiency and surface–atmosphere coupling of European boreal coniferous forests was explored using eddy-covariance (EC) energy and CO2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil–vegetation–atmosphere transfer model as well as by a bulk Gs representation. The LAI variations significantly alter radiation regime, within-canopy microclimate, sink/source distributions of CO2, H2O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem-scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry-canopy evapotranspiration (ET) was reasonably ‘conservative’ over the studied LAI range 0.5–7.0 m2 m−2. Both ET and Gs experienced a minimum in the LAI range 1–2 m2 m−2 caused by opposing nonproportional response of stomatally controlled transpiration and ‘free’ forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m2 m−2) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI <3 m2 m−2). This finding emphasizes the significance of stand-replacing disturbances on the controls of surface energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light-saturated water-use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests.
  •  
17.
  • Li, Tingting, et al. (författare)
  • Importance of vegetation classes in modeling CH4 emissions from boreal and subarctic wetlands in Finland
  • 2016
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 572, s. 1111-1122
  • Tidskriftsartikel (refereegranskat)abstract
    • Boreal/arctic wetlands are dominated by diverse plant species, which vary in their contribution to CH4 production, oxidation and transport processes. Earlier studies have often lumped the processes all together, which may induce large uncertainties into the results. We present a novel model, which includes three vegetation classes and can be used to simulate CH4 emissions from boreal and arctic treeless wetlands. The model is based on an earlier biogeophysical model, CH4MODwetland. We grouped the vegetation as graminoids, shrubs and Sphagnum and recalibrated the vegetation parameters according to their different CH4 production, oxidation and transport capacities. Then, we used eddy-covariance-based CH4 flux observations from a boreal (Siikaneva) and a subarctic fen (Lompolojänkkä) in Finland to validate the model. The results showed that the recalibrated model could generally simulate the seasonal patterns of the Finnish wetlands with different plant communities. The comparison between the simulated and measured daily CH4 fluxes resulted in a correlation coefficient (R 2 ) of 0.82 with a slope of 1.0 and an intercept of -0.1mgm-2 h-1 for the Siikaneva site (n=2249, p<0.001) and an R2 of 0.82 with a slope of 1.0 and an intercept of 0.0mgm-2 h-1 for the Lompolojänkkä site (n=1826, p<0.001). Compared with the original model, the recalibrated model in this study significantly improved the model efficiency (EF), from -5.5 to 0.8 at the Siikaneva site and from -0.4 to 0.8 at the Lompolojänkkä site. The simulated annual CH4 emissions ranged from 7 to 24gm-2 yr-1, which was consistent with the observations (7-22gm-2 yr-1). However, there are some discrepancies between the simulated and observed daily CH4 fluxes for the Siikaneva site (RMSE =50.0%) and the Lompolojänkkä site (RMSE =47.9%). Model sensitivity analysis showed that increasing the proportion of the graminoids would significantly increase the CH4 emission levels. Our study demonstrated that the parameterization of the different vegetation processes was important in estimating long-term wetland CH4 emissions.
  •  
18.
  • Makela, Annikki, et al. (författare)
  • Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe
  • 2008
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 14:1, s. 92-108
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper develops a statistical model for daily gross primary production (GPP) in boreal and temperate coniferous forests. The model applies the light use efficiency (LUE) approach, which estimates the conversion efficiency of daily absorbed photosynthetically active radiation (APAR) into daily GPP as a product of potential LUE and modifying factors. The latter were derived from daily total APAR and daily mean temperature, vapour pressure deficit (VPD) and soil water content (SWC). Modelling data came from five European eddy covariance measurement towers over 2-8 years. The model was tested against independent data from two AmeriFlux stations. The model with the APAR, temperature and VPD modifiers worked well in almost all the site-year combinations, but the SWC modifier only improved the fit in few cases. Geographical variation was found in the modifiers and potential LUE in site-specific models. When a model was fitted to pooled data, differences between sites could be explained by potential LUE, leaf area and environmental conditions. The test against the AmeriFlux data corroborated this finding. The potential LUE varied from 1.9 to 3.1 g C MJ(-1), and a weak correlation was found between foliar nitrogen concentration and potential LUE. Some year-to-year variation remained which could be captured by neither the pooled nor the site-specific models.
  •  
19.
  • Niu, Shuli, et al. (författare)
  • Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.
  • 2012
  • Ingår i: New Phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 194:3, s. 775-783
  • Tidskriftsartikel (refereegranskat)abstract
    • • It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
  •  
20.
  • Papale, Dario, et al. (författare)
  • Standards and Open Access are the ICOS Pillars Reply to "Comments on 'The Integrated Carbon Observation System in Europe'"
  • 2023
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 104:12, s. 953-955
  • Tidskriftsartikel (refereegranskat)abstract
    • In his comment (Kowalski 2023) on our recent publication (Heiskanen et al. 2022) where we present the Integrated Carbon Observation System (ICOS) research infrastructure, Andrew Kowalski introduces three important and, in our opinion, different potential issues in the definition, collection, and availability of field measurements made by the ICOS network, and he proposes possible solutions to these issues.
  •  
21.
  • Peaucelle, Marc, et al. (författare)
  • Covariations between plant functional traits emerge from constraining parameterization of a terrestrial biosphere model
  • 2019
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 28:9, s. 1351-1365
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: The mechanisms of plant trait adaptation and acclimation are still poorly understood and, consequently, lack a consistent representation in terrestrial biosphere models (TBMs). Despite the increasing availability of geo-referenced trait observations, current databases are still insufficient to cover all vegetation types and environmental conditions. In parallel, the growing number of continuous eddy-covariance observations of energy and CO2 fluxes has enabled modellers to optimize TBMs with these data. Past attempts to optimize TBM parameters mostly focused on model performance, overlooking the ecological properties of ecosystems. The aim of this study was to assess the ecological consistency of optimized trait-related parameters while improving the model performances for gross primary productivity (GPP) at sites. Location: Worldwide. Time period: 1992–2012. Major taxa studied: Trees and C3 grasses. Methods: We optimized parameters of the ORCHIDEE model against 371 site-years of GPP estimates from the FLUXNET network, and we looked at global covariation among parameters and with climate. Results: The optimized parameter values were shown to be consistent with leaf-scale traits, in particular, with well-known trade-offs observed at the leaf level, echoing the leaf economic spectrum theory. Results showed a marked sensitivity of trait-related parameters to local bioclimatic variables and reproduced the observed relationships between traits and climate. Main conclusions: Our approach validates some biological processes implemented in the model and enables us to study ecological properties of vegetation at the canopy level, in addition to some traits that are difficult to observe experimentally. This study stresses the need for: (a) implementing explicit trade-offs and acclimation processes in TBMs; (b) improving the representation of processes to avoid model-specific parameterization; and (c) performing systematic measurements of traits at FLUXNET sites in order to gather information on plant ecophysiology and plant diversity, together with micro-meteorological conditions.
  •  
22.
  • Peltola, Olli, et al. (författare)
  • Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations
  • 2019
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 11:3, s. 1263-1289
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process ("bottom-up") or inversion ("top-down") models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45° N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash-Sutcliffe model efficiency D 0:47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3-41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4-39.9) or 38 (25.9-49.5) Tg(CH4) yr-1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019).
  •  
23.
  • Peltoniemi, Mikko, et al. (författare)
  • Does canopy mean nitrogen concentration explain variation in canopy light use efficiency across 14 contrasting forest sites?
  • 2012
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 1758-4469 .- 0829-318X. ; 32:2, s. 200-218
  • Tidskriftsartikel (refereegranskat)abstract
    • The maximum light use efficiency (LUE = gross primary production (GPP)/absorbed photosynthetic photon flux density (aPPFD)) of plant canopies has been reported to vary spatially and some of this variation has previously been attributed to plant species differences. The canopy nitrogen concentration [N] can potentially explain some of this spatial variation. However, the current paradigm of the N-effect on photosynthesis is largely based on the relationship between photosynthetic capacity (A(max)) and [N], i.e., the effects of [N] on photosynthesis rates appear under high PPFD. A maximum LUE-[N] relationship, if it existed, would influence photosynthesis in the whole range of PPFD. We estimated maximum LUE for 14 eddy-covariance forest sites, examined its [N] dependency and investigated how the [N]-maximum LUE dependency could be incorporated into a GPP model. In the model, maximum LUE corresponds to LUE under optimal environmental conditions before light saturation takes place (the slope of GPP vs. PPFD under low PPFD). Maximum LUE was higher in deciduous/mixed than in coniferous sites, and correlated significantly with canopy mean [N]. Correlations between maximum LUE and canopy [N] existed regardless of daily PPFD, although we expected the correlation to disappear under low PPFD when LUE was also highest. Despite these correlations, including [N] in the model of GPP only marginally decreased the root mean squared error. Our results suggest that maximum LUE correlates linearly with canopy [N], but that a larger body of data is required before we can include this relationship into a GPP model. Gross primary production will therefore positively correlate with [N] already at low PPFD, and not only at high PPFD as is suggested by the prevailing paradigm of leaf-level A(max)-[N] relationships. This finding has consequences for modelling GPP driven by temporal changes or spatial variation in canopy [N].
  •  
24.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990-2019
  • 2023
  • Ingår i: Earth System Science Data. - : COPERNICUS GESELLSCHAFT MBH. - 1866-3508 .- 1866-3516. ; 15:3, s. 1197-1268
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990-2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. For CH4 emissions, over the updated 2015-2019 period, which covers a sufficiently robust number of overlapping estimates, and most importantly the NGHGIs, the anthropogenic BU approaches are directly comparable, accounting for mean emissions of 20.5 TgCH(4) yr(-1) (EDGARv6.0, last year 2018) and 18.4 TgCH(4) yr(-1) (GAINS, last year 2015), close to the NGHGI estimates of 17 :5 +/- 2 :1 TgCH(4) yr(-1). TD inversion estimates give higher emission estimates, as they also detect natural emissions. Over the same period, high-resolution regional TD inversions report a mean emission of 34 TgCH(4) yr(-1). Coarser-resolution global-scale TD inversions result in emission estimates of 23 and 24 TgCH(4) yr(-1) inferred from GOSAT and surface (SURF) network atmospheric measurements, respectively. The magnitude of natural peatland and mineral soil emissions from the JSBACH-HIMMELI model, natural rivers, lake and reservoir emissions, geological sources, and biomass burning together could account for the gap between NGHGI and inversions and account for 8 TgCH(4) yr(-1). For N2O emissions, over the 2015-2019 period, both BU products (EDGARv6.0 and GAINS) report a mean value of anthropogenic emissions of 0.9 TgN(2)Oyr(-1), close to the NGHGI data (0 :8 +/- 55% TgN(2)Oyr(-1)). Over the same period, the mean of TD global and regional inversions was 1.4 TgN(2)Oyr(-1) (excluding TOMCAT, which reported no data). The TD and BU comparison method defined in this study can be operationalized for future annual updates for the calculation of CH4 and N2O budgets at the national and EU27 C UK scales. Future comparability will be enhanced with further steps involving analysis at finer temporal resolutions and estimation of emissions over intra-annual timescales, which is of great importance for CH4 and N2O, and may help identify sector contributions to divergence between prior and posterior estimates at the annual and/or inter-annual scale. Even if currently comparison between CH4 and N2O inversion estimates and NGHGIs is highly uncertain because of the large spread in the inversion results, TD inversions inferred from atmospheric observations represent the most independent data against which inventory totals can be compared. With anticipated improvements in atmospheric modeling and observations, as well as modeling of natural fluxes, TD inversions may arguably emerge as the most powerful tool for verifying emission inventories for CH4, N2O and other GHGs. The referenced dataset srelated to figures are visualized at https://doi.org/10.5281/zenodo.7553800 (Petrescu et al., 2023).
  •  
25.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The uncertain climate footprint of wetlands under human pressure
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 112:15, s. 4594-4599
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 36
Typ av publikation
tidskriftsartikel (33)
forskningsöversikt (2)
samlingsverk (redaktörskap) (1)
Typ av innehåll
refereegranskat (35)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Vesala, Timo (36)
Mammarella, Ivan (15)
Rinne, Janne (14)
Aurela, Mika (13)
Lindroth, Anders (12)
Lohila, Annalea (11)
visa fler...
Alekseychik, Pavel (8)
Desai, Ankur R. (7)
Varlagin, Andrej (7)
Merbold, Lutz (7)
Peltola, Olli (7)
Montagnani, Leonardo (6)
Sachs, Torsten (6)
Laurila, Tuomas (6)
Peichl, Matthias (5)
Papale, Dario (5)
Kulmala, Markku (5)
Tuittila, Eeva-Stiin ... (5)
Aalto, Tuula (5)
Buchmann, Nina (5)
Kolari, Pasi (5)
Heimann, Martin (5)
Barr, Alan (5)
Kerminen, Veli-Matti (4)
Wohlfahrt, Georg (4)
Cescatti, Alessandro (4)
Chen, Jiquan (4)
Gielen, Bert (4)
Friborg, Thomas (4)
Oechel, Walter C. (4)
Zona, Donatella (4)
Heiskanen, Jouni (4)
Lund, Magnus (3)
Ciais, Philippe (3)
Pavelka, Marian (3)
Jackson, Robert B. (3)
Christensen, Torben (3)
Helbig, Manuel (3)
Kruijt, Bart (3)
Noormets, Asko (3)
Pihlatie, Mari (3)
Ibrom, Andreas (3)
Janssens, Ivan A. (3)
Knox, Sara H. (3)
Bohrer, Gil (3)
Hirano, Takashi (3)
Schmid, Hans Peter (3)
Sonnentag, Oliver (3)
Pumpanen, Jukka (3)
Ojala, Anne (3)
visa färre...
Lärosäte
Lunds universitet (28)
Sveriges Lantbruksuniversitet (6)
Stockholms universitet (4)
Linköpings universitet (2)
Göteborgs universitet (1)
Umeå universitet (1)
visa fler...
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (35)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (34)
Lantbruksvetenskap (4)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy