SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vos Rutger A.) "

Search: WFRF:(Vos Rutger A.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • van Langevelde, Frank, et al. (author)
  • Declines in moth populations stress the need for conserving dark nights
  • 2018
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 24:3, s. 925-932
  • Journal article (peer-reviewed)abstract
    • Given the global continuous rise, artificial light at night is often considered a driving force behind moth population declines. Although negative effects on individuals have been shown, there is no evidence for effects on population sizes to date. Therefore, we compared population trends of Dutch macromoth fauna over the period 1985-2015 between moth species that differ in phototaxis and adult circadian rhythm. We found that moth species that show positive phototaxis or are nocturnally active have stronger negative population trends than species that are not attracted to light or are diurnal species. Our results indicate that artificial light at night is an important factor in explaining declines in moth populations in regions with high artificial night sky brightness. Our study supports efforts to reduce the impacts of artificial light at night by promoting lamps that do not attract insects and reduce overall levels of illumination in rural areas to reverse declines of moth populations.
  •  
2.
  • Antonelli, Alexandre, 1978, et al. (author)
  • Toward a Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa.
  • 2017
  • In: Systematic biology. - : Oxford University Press (OUP). - 1076-836X .- 1063-5157. ; 66:2, s. 152-166
  • Journal article (peer-reviewed)abstract
    • Rapidly growing biological data-including molecular sequences and fossils-hold an unprecedented potential to reveal how evolutionary processes generate and maintain biodiversity. However, researchers often have to develop their own idiosyncratic workflows to integrate and analyze these data for reconstructing time-calibrated phylogenies. In addition, divergence times estimated under different methods and assumptions, and based on data of various quality and reliability, should not be combined without proper correction. Here we introduce a modular framework termed SUPERSMART (Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa), and provide a proof of concept for dealing with the moving targets of evolutionary and biogeographical research. This framework assembles comprehensive data sets of molecular and fossil data for any taxa and infers dated phylogenies using robust species tree methods, also allowing for the inclusion of genomic data produced through next-generation sequencing techniques. We exemplify the application of our method by presenting phylogenetic and dating analyses for the mammal order Primates and for the plant family Arecaceae (palms). We believe that this framework will provide a valuable tool for a wide range of hypothesis-driven research questions in systematics, biogeography, and evolution. SUPERSMART will also accelerate the inference of a "Dated Tree of Life" where all node ages are directly comparable. [Bayesian phylogenetics; data mining; divide-and-conquer methods; GenBank; multilocus multispecies coalescent; next-generation sequencing; palms; primates; tree calibration.].
  •  
3.
  • Antonelli, Alexandre, 1978, et al. (author)
  • SUPERSMART: ecology and evolution in the era of big data
  • 2014
  • In: PeerJ PrePrints. - : PeerJ. - 2167-9843.
  • Journal article (other academic/artistic)abstract
    • Rapidly growing biological data volumes – including molecular sequences, species traits, geographic occurrences, specimen collections, and fossil records – hold an unprecedented, yet largely unexplored potential to reveal how ecological and evolutionary processes generate and maintain biodiversity. Most biodiversity studies integrating ecological data and evolutionary history use an idiosyncratic step-by-step approach for the reconstruction of time-calibrated phylogenies in light of ecological and evolutionary scenarios. Here we introduce a conceptual framework, termed SUPERSMART (Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa), and provide a proof of concept for dealing with the moving targets of biodiversity research. This framework reconstructs dated phylogenies based on the assembly of molecular datasets and collects pertinent data on ecology, distribution, and fossils of the focal clade. The data handled for each step are continuously updated as databases accumulate new records. We exemplify the practice of our method by presenting comprehensive phylogenetic and dating analyses for the orders Primates and the Gentianales. We believe that this emerging framework will provide an invaluable tool for a wide range of hypothesis-driven research questions in ecology and evolution.
  •  
4.
  • Dirks-Mulder, Anita, et al. (author)
  • Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system
  • 2017
  • In: BMC Evolutionary Biology. - : BIOMED CENTRAL LTD. - 1471-2148. ; 17
  • Journal article (peer-reviewed)abstract
    • Background: Thousands of flowering plant species attract pollinators without offering rewards, but the evolution of this deceit is poorly understood. Rewardless flowers of the orchid Erycina pusilla have an enlarged median sepal and incised median petal ('lip') to attract oil-collecting bees. These bees also forage on similar looking but rewarding Malpighiaceae flowers that have five unequally sized petals and gland-carrying sepals. The lip of E. pusilla has a 'callus' that, together with winged 'stelidia', mimics these glands. Different hypotheses exist about the evolutionary origin of the median sepal, callus and stelidia of orchid flowers. Results: The evolutionary origin of these organs was investigated using a combination of morphological, molecular and phylogenetic techniques to a developmental series of floral buds of E. pusilla. The vascular bundle of the median sepal indicates it is a first whorl organ but its convex epidermal cells reflect convergence of petaloid features. Expression of AGL6 EpMADS4 and APETALA3 EpMADS14 is low in the median sepal, possibly correlating with its petaloid appearance. A vascular bundle indicating second whorl derivation leads to the lip. AGL6 EpMADS5 and APETALA3 EpMADS13 are most highly expressed in lip and callus, consistent with current models for lip identity. Six vascular bundles, indicating a stamen-derived origin, lead to the callus, stelidia and stamen. AGAMOUS is not expressed in the callus, consistent with its sterilization. Out of three copies of AGAMOUS and four copies of SEPALLATA, EpMADS22 and EpMADS6 are most highly expressed in the stamen. Another copy of AGAMOUS, EpMADS20, and the single copy of SEEDSTICK, EpMADS23, are most highly expressed in the stelidia, suggesting EpMADS22 may be required for fertile stamens. Conclusions: The median sepal, callus and stelidia of E. pusilla appear to be derived from a sepal, a stamen that gained petal identity, and stamens, respectively. Duplications, diversifying selection and changes in spatial expression of different MADS-box genes shaped these organs, enabling the rewardless flowers of E. pusilla to mimic an unrelated rewarding flower for pollinator attraction. These genetic changes are not incorporated in current models and urge for a rethinking of the evolution of deceptive flowers.
  •  
5.
  • Schwallier, Rachel, et al. (author)
  • Phylogenetic analysis of niche divergence reveals distinct evolutionary histories and climate change implications for tropical carnivorous pitcher plants
  • 2016
  • In: Diversity & distributions. - : Wiley. - 1366-9516 .- 1472-4642. ; 22:1, s. 97-110
  • Journal article (peer-reviewed)abstract
    • AimTo analyse the underpinnings of historical drivers of diversity and their contributions to current distributions and future roles in a changing climate, we studied the relationship between ecological niche divergence and phylogenetic signal in tropical carnivorous pitcher plants. LocationSoutheast Asia. MethodsEstimates of realized ecological niches were reconstructed and plotted along a newly created multilocus molecular phylogeny. Phylogenetic signal was analysed by comparisons of calculated phylogenetic relatedness with ecological niche divergence. Current and projected future potentially suitable habitats were mapped for several species of plants with variable evolutionary histories and distributions. ResultsHighland and lowland species had distinct phylogenetic signals. Higher altitude species had significantly lower molecular divergence as compared with the lowland species, yet ecological niches with less overlap. When projected onto a future climate scenario, highland species lose a greater amount of potentially suitable habitat compared to lower altitude species, and the majority ofstudied higher altitude species will face an overall loss of future suitable habitat. Main conclusionWe conclude that distinct phylogenetic signals not only unravel differing evolutionary histories but also show that the implications of species' tolerances to future changing climate vary. Over the past million years, historical climate change shaped the differing evolution and ecological niches of highland and lowland tropical pitcher plant species. Rapid, recent radiations of the higher altitude species are reflected in limited molecular divergence, which is in sharp contrast with the more gradually evolved and genetically distinct lower altitude species in our study. Our projections for future potentially suitable habitats show that on-going climate shifts will have detrimental effects on especially the higher altitude species due to a narrower niche tolerance and dramatic loss of potentially suitable habitat.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view