SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wada Shin ichi) "

Sökning: WFRF:(Wada Shin ichi)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berrah, Nora, et al. (författare)
  • Double-core-hole spectroscopy for chemical analysis with an intense X-ray femtosecond laser
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:41, s. 16912-16915
  • Tidskriftsartikel (refereegranskat)abstract
    • Theory predicts that double-core-hole (DCH) spectroscopy can provide a new powerful means of differentiating between similar chemical systems with a sensitivity not hitherto possible. Although DCH ionization on a single site in molecules was recently measured with double-and single-photon absorption, double-core holes with single vacancies on two different sites, allowing unambiguous chemical analysis, have remained elusive. Here we report that direct observation of double-core holes with single vacancies on two different sites produced via sequential two-photon absorption, using short, intense X-ray pulses from the Linac Coherent Light Source free-electron laser and compare it with theoretical modeling. The observation of DCH states, which exhibit a unique signature, and agreement with theory proves the feasibility of the method. Our findings exploit the ultrashort pulse duration of the free-electron laser to eject two core electrons on a time scale comparable to that of Auger decay and demonstrate possible future X-ray control of physical inner-shell processes.
  •  
2.
  • Fukuzawa, Hironobu, et al. (författare)
  • Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH2I2
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing availability of X-ray free-electron lasers (XFELs) has catalyzed the development of single-object structural determination and of structural dynamics tracking in real-time. Disentangling the molecular-level reactions triggered by the interaction with an XFEL pulse is a fundamental step towards developing such applications. Here we report real-time observations of XFEL-induced electronic decay via short-lived transient electronic states in the diiodomethane molecule, using a femtosecond near-infrared probe laser. We determine the lifetimes of the transient states populated during the XFEL-induced Auger cascades and find that multiply charged iodine ions are issued from short-lived (∼20 fs) transient states, whereas the singly charged ones originate from significantly longer-lived states (∼100 fs). We identify the mechanisms behind these different time scales: contrary to the short-lived transient states which relax by molecular Auger decay, the long-lived ones decay by an interatomic Coulombic decay between two iodine atoms, during the molecular fragmentation. © 2019, The Author(s).
  •  
3.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
4.
  • Kumagai, Yoshiaki, et al. (författare)
  • Suppression of thermal nanoplasma emission in clusters strongly ionized by hard x-rays
  • 2021
  • Ingår i: Journal of Physics B. - : Institute of Physics Publishing (IOPP). - 0953-4075 .- 1361-6455. ; 54:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Using electron and ion spectroscopy, we studied the electron and nuclear dynamics in similar to 50 000-atom large krypton clusters, following excitation with an intense hard x-ray pulse. Beyond the single pulse experiment, we also present the results of a time-resolved, x-ray pump-near-infrared probe measurement that allows one to learn about the time evolution of the system. After core ionization of the atoms by x-ray photons, trapped Auger and secondary electrons form a nanoplasma in which the krypton ions are embedded, according to the already published scenario. While the ion data show expected features, the electron emission spectra miss the expected pump-probe delay-dependent enhancement except for a slight enhancement in the energy range below 2 eV. Theoretical simulations help to reveal that, due to the deep trapping potential of the ions during the long time expansion accompanied by electron-ion recombination, thermal emission from the transient nanoplasma becomes quenched.
  •  
5.
  •  
6.
  • You, Daehyun, et al. (författare)
  • Multi-particle momentum correlations extracted using covariance methods on multiple-ionization of diiodomethane molecules by soft-X-ray free-electron laser pulses
  • 2020
  • Ingår i: Physical chemistry chemical physics : PCCP. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 22:5, s. 2648-2659
  • Tidskriftsartikel (refereegranskat)abstract
    • Momenta of ions from diiodomethane molecules after multiple ionization by soft-X-ray free-electron-laser pulses are measured. Correlations between the ion momenta are extracted by covariance methods formulated for the use in multiparticle momentum-resolved ion time-of-flight spectroscopy. Femtosecond dynamics of the dissociating multiply charged diiodomethane cations is discussed and interpreted by using simulations based on a classical Coulomb explosion model including charge evolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy