SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wallace Bryan P.) "

Sökning: WFRF:(Wallace Bryan P.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Selig, Elizabeth R, et al. (författare)
  • Global priorities for marine biodiversity conservation.
  • 2014
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent decades, many marine populations have experienced major declines in abundance, but we still know little about where management interventions may help protect the highest levels of marine biodiversity. We used modeled spatial distribution data for nearly 12,500 species to quantify global patterns of species richness and two measures of endemism. By combining these data with spatial information on cumulative human impacts, we identified priority areas where marine biodiversity is most and least impacted by human activities, both within Exclusive Economic Zones (EEZs) and Areas Beyond National Jurisdiction (ABNJ). Our analyses highlighted places that are both accepted priorities for marine conservation like the Coral Triangle, as well as less well-known locations in the southwest Indian Ocean, western Pacific Ocean, Arctic and Antarctic Oceans, and within semi-enclosed seas like the Mediterranean and Baltic Seas. Within highly impacted priority areas, climate and fishing were the biggest stressors. Although new priorities may arise as we continue to improve marine species range datasets, results from this work are an essential first step in guiding limited resources to regions where investment could best sustain marine biodiversity.
  •  
3.
  • Wallace, Bryan P., et al. (författare)
  • Global Conservation Priorities for Marine Turtles
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a "conservation priorities portfolio" system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for widespread, long-lived taxa.
  •  
4.
  • Wallace, Bryan P., et al. (författare)
  • Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales
  • 2010
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques - including site-based monitoring, genetic analyses, mark-recapture studies and telemetry - can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings: To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine-to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance: The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework - including maps and supporting metadata - will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Liu, X (1)
Chen, L (1)
Chen, S. (1)
Clark, A. (1)
Francis, D. (1)
George, S. (1)
visa fler...
Gupta, S. (1)
Huang, Y. (1)
King, M. (1)
Lee, L. (1)
Lewis, A. (1)
Li, L. (1)
Liu, B. (1)
Lopes, L. (1)
Losada, M. (1)
Mann, A. (1)
Mehta, A. (1)
Moss, J. (1)
Negri, G. (1)
Robson, A. (1)
Romano, M. (1)
Thomson, E. (1)
Wang, H. (1)
Webb, S. (1)
Wu, M. (1)
Yang, Y. (1)
Zhang, H. (1)
Zhao, Z. (1)
Morton, A. (1)
Aoun, S. (1)
Brown, G. (1)
Patel, N. (1)
Taylor, C. (1)
Davies, E. (1)
Haider, S. (1)
Gupta, A. (1)
Kelly, M. (1)
Li, J. (1)
Coe, P. (1)
Smith, M. (1)
Zhang, G (1)
Pal, A. (1)
Shaw, C. (1)
Allen, K. (1)
Price, S (1)
Martin, J. (1)
Thomas, P. (1)
Davies, G (1)
Schulz, J (1)
Aytac, E (1)
visa färre...
Lärosäte
Lunds universitet (3)
Karolinska Institutet (1)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy