SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Feng Assistant Professor) "

Sökning: WFRF:(Wang Feng Assistant Professor)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ji, Fuxiang, 1991- (författare)
  • Bandgap Engineering of Lead-Free Halide Double Perovskites
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lead-free halide double perovskites (HDPs, A2BIBIIIX6) with attractive optical and electronic features are regarded as one of the most promising alternatives to overcome the toxicity and stability issues of lead halide perovskites. They provide a wide range of possible combinations and rich substitutional chemistry with interesting properties for various optoelectronic devices. However, the performance of state-of-the-art lead-free HDPs is not yet comparable to that of lead halide perovskites, especially in the photovoltaic field. One of the main reasons for this is that HDPs usually have large and/or indirect bandgaps, which limit their optical and optoelectronic properties in the visible and infrared region. In this thesis, we attempt to modify the bandgap and optical properties of HDPs using metal doping/alloying and crystallization control, as well as provide detailed understanding of the alloying at the atomic level. We also observe significant changes of the bandgap of HDPs at different temperatures (i.e., thermochromism) and uncover the reasons behind it. We first adopt the metal doping/alloying strategy to alter the absorption properties of benchmark HDPs Cs2AgBiBr6. By introducing Cu as the dopant in Cs2AgBiBr6, we significantly broaden the absorption edge from around 610 nm to around 860 nm. Systematic characterizations indicate that Cu doping introduces defect states (sub-bandgap states) in the bandgap, without changing the bandgap of Cs2AgBiBr6. Interestingly, these sub-bandgaps can generate considerable amount of band carriers upon optical excitation, making these double perovskites promising for near-infrared light detection. In parallel with the material modification using the metal doping/alloying strategy, the fundamental understanding of these doped/alloyed double perovskite is also of critical importance. In the second paper, we reveal the atomic-level structure of alloyed double perovskites by presenting a series of double perovskite alloys with the chemical formula Cs2AgIn1-xFexCl6 (x = 0-1) showing tunable bandgaps in the range of 2.8-1.6 eV. Our results show that Fe3+ substitutes In3+ in the lattice with the formation of [FeCl6]3−·[AgCl6]5− domains, which grow larger gradually as the Fe3+ concentration increases. It is noted that these domains could be further connected to form microscopically segregated Fe3+-rich phases in the double perovskite alloys. To narrow the bandgap of Cs2AgBiBr6, we also develop a crystallization control approach, where high temperature is employed to assist the single crystal growth. By simply increasing the crystal growth temperature from 60 oC to 150 oC, the bandgap of Cs2AgBiBr6 crystals can be reduced from 1.98 eV to 1.72 eV, which is the lowest reported bandgap for Cs2AgBiBr6 at ambient conditions. The underlying reason is hypothesized to be related to the increased level of Ag–Bi disorder in the crystal structure. Lastly, we observe an interesting reversible thermochromic behavior in HDPs Cs2NaFeCl6. Specifically, the optical bandgap of Cs2NaFeCl6 is reduced from 2.06 eV to 1.86 eV when the temperature increases from RT to 150 oC and turns back to its original value after cooling. Meanwhile, we observe lattice expansion during the heating/ cooling process without phase transition. Our first-principles calculation indicates that the underlying mechanism for the thermochromic phenomenon in Cs2NaFeCl6 is mainly related to the electron-phonon coupling. Although the development of HDPs is in its early stages, we believe that HDPs with impressive optical and electronic properties and rich substitutional chemistry have a bright future in optoelectronic and multifunctional applications. Our findings shed new light to the absorption and bandgap modulation of HDPs and provide new insights into the atomic-level structures of DPAs, which can help to develop efficient optoelectronic devices. 
  •  
2.
  • Ji, Fuxiang, 1991-, et al. (författare)
  • Remarkable Thermochromism in the Double Perovskite Cs2NaFeCl6
  • 2023
  • Ingår i: Advanced Optical Materials. - : Wiley-Blackwell. - 2162-7568 .- 2195-1071.
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free halide double perovskites (HDPs) have emerged as a new generation of thermochromic materials. However, further materials development and mechanistic understanding are required. Here, a highly stable HDP Cs2NaFeCl6 single crystal is synthesized, and its remarkable and fully reversible thermochromism with a wide color variation from light-yellow to black over a temperature range of 10 to 423 K is investigated. First-principles, density functional theory (DFT)-based calculations indicate that the thermochromism in Cs2NaFeCl6 is an effect of electron–phonon coupling. The temperature sensitivity of the bandgap in Cs2NaFeCl6 is up to 2.52 meVK−1 based on the Varshni equation, which is significantly higher than that of lead halide perovskites and many conventional group-IV, III–V semiconductors. Meanwhile, this material shows excellent environmental, thermal, and thermochromic cycle stability. This work provides valuable insights into HDPs' thermochromism and sheds new light on developing efficient thermochromic materials.
  •  
3.
  • Ji, Fuxiang, 1991-, et al. (författare)
  • Remarkable Thermochromism in the Double Perovskite Cs2NaFeCl6
  • 2024
  • Ingår i: Advanced Optical Materials. - : John Wiley & Sons. - 2162-7568 .- 2195-1071. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free halide double perovskites (HDPs) have emerged as a new generation of thermochromic materials. However, further materials development and mechanistic understanding are required. Here, a highly stable HDP Cs2NaFeCl6 single crystal is synthesized, and its remarkable and fully reversible thermochromism with a wide color variation from light-yellow to black over a temperature range of 10 to 423 K is investigated. First-principles, density functional theory (DFT)-based calculations indicate that the thermochromism in Cs2NaFeCl6 is an effect of electron-phonon coupling. The temperature sensitivity of the bandgap in Cs2NaFeCl6 is up to 2.52 meVK(-1) based on the Varshni equation, which is significantly higher than that of lead halide perovskites and many conventional group-IV, III-V semiconductors. Meanwhile, this material shows excellent environmental, thermal, and thermochromic cycle stability. This work provides valuable insights into HDPs' thermochromism and sheds new light on developing efficient thermochromic materials.
  •  
4.
  • Wang, Heyong, 1989- (författare)
  • High-Quality Perovskite Films for Efficient and Stable Light-Emitting Diodes
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Metal halide perovskites have attracted significant attention for light-emitting applications, because of their excellent properties, such as high photoluminescence quantum yields (PLQYs), good charge mobility, narrow emission bandwidth, readily tunable emission spectra ranging from ultraviolet to near-infrared, and solution processability. Since the first room-temperature perovskite-based light-emitting diodes (PeLEDs) reported in 2014, tremendous efforts have been made to promote the efficiencies of PeLEDs, including theoretical simulation, materials design, and device engineering. To reach the ultimate goal of commercialization, PeLEDs with both high-efficiency and long-term operational stability are desired. Achieving high-quality perovskite emissive films is key towards this goal. Centering around the high-quality perovskite films, in this thesis, we demonstrate effective synthesis strategies for the deposition of high-quality perovskite films (including both three-dimensional and mixed-dimensional perovskites) and investigate the effects of ion migration in the perovskite films on the performance of PeLEDs.Due to the fast crystallization nature of perovskites and the low formation energy of defects, controlling the crystallization processes of these films has proved to be an effective approach for achieving high-quality perovskite films. For three-dimensional (3D) perovskite films, we have controlled the formation of these films through the assistance of molecules with the amino group. Herein, we have chosen an electron-transport molecule with two amino groups, 4,4’-diaminodiphenyl sulfone (DDS), to control the crystallization process of perovskite films (Paper 1). The resulting perovskite films consists of in-situ formed high quality perovskite nanocrystals embedded in the electron-transport molecular matrix, resulting in improved PLQYs and structural stability. PeLEDs based on these perovskite films have exhibited both high efficiency and long operational stability.In addition, we have investigated the formation of mixed-dimensional perovskite films. Efficient PeLEDs based on mixed-dimensional perovskite films were fabricated with tin dioxide (SnO2) as an electron transport layer (Paper 3). We also note that the deposition methods have a significant impact on the morphology and optical properties of prepared mixed-dimensional perovskite films (Paper 4). In addition, we provide an effective method to extend the deposition of mixed-dimensional perovskite films, replacing organic ammonium halides with amines in the perovskite precursor solutions to form organic spacer cations through the in-situ protonation process of amines (Paper 2).In spite of these efforts, the performance of PeLEDs is still far from the commercialization standard, partially limited by ion migration. In Paper 5, we discuss impacts of mobile ions in the perovskite films on the performance of PeLEDs. We find that a dynamic redistribution of mobile ions can change current density of a device, leading to EQE/hysteresis during forward and reverse voltage scan and enhanced EQE under constant driving voltages. In addition, we have found that excess mobile ions in the perovskite layer can aggravate the hysteresis and shorten the operational stability of PeLEDs.In this thesis, we also discuss the remaining key challenges in the PeLED field, including the achievement of high-performance blue, white, and lead-free PeLEDs, as well as possible strategies to address these challenges. We hope that our research findings provide insights into the basic science behind the perovskite materials, and broadly benefit other optoelectronic communities, such as perovskite solar cells, flexible electronics, and so on.
  •  
5.
  • Ji, Fuxiang, 1991-, et al. (författare)
  • Challenges and Progress in Lead-Free Halide Double Perovskite Solar Cells
  • 2023
  • Ingår i: Solar RRL. - : John Wiley & Sons. - 2367-198X. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free halide double perovskites (HDPs) with a chemical formula of A(2)B(+)B(3+)X(6) are booming as attractive alternatives to solve the toxicity issue of lead-based halide perovskites (APbX(3)). HDPs show excellent stability, a wide range of possible combinations, and attractive optoelectronic features. Although a number of novel HDPs have been studied, the power conversion efficiency of the state-of-the-art double perovskite solar cell is still far inferior to that of the dominant Pb-based ones. Understanding the fundamental challenges is essential for further increasing device efficiency. In this review, HDPs with attractive electronic and optical properties are focused on, and current challenges in material properties and device fabrication that limit high-efficiency photovoltaics are analyzed. Finally, the promising approaches and views to overcome these bottlenecks are highlighted.
  •  
6.
  • Ji, Fuxiang, et al. (författare)
  • Amine Gas-Induced Reversible Optical Bleaching of Bismuth-Based Lead-Free Perovskite Thin Films
  • 2024
  • Ingår i: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Reversible optical property changes in lead-free perovskites have recently received great interest due to their potential applications in smart windows, sensors, data encryption, and various on-demand devices. However, it is challenging to achieve remarkable color changes in their thin films. Here, methylamine gas (CH3NH2, MA0) induced switchable optical bleaching of bismuth (Bi)-based perovskite films is demonstrated for the first time. By exposure to an MA0 atmosphere, the color of Cs2AgBiBr6 (CABB) films changes from yellow to transparent, and the color of Cs3Bi2I9 (CBI) films changes from dark red to transparent. More interestingly, the underlying reason is found to be the interactions between MA0 and Bi3+ with the formation of an amorphous liquefied transparent intermediate phase, which is different from that of lead-based perovskite systems. Moreover, the generality of this approach is demonstrated with other amine gases, including ethylamine (C2H5NH2, EA0) and butylamine (CH3(CH2)3NH2, BA0), and another compound, Cs3Sb2I9, by observing a similar reversible optical bleaching phenomenon. The potential for the application of CABB and CBI films in switchable smart windows is investigated. This study provides valuable insights into the interactions between amine gases and lead-free perovskites, opening up new possibilities for high-efficiency optoelectronic and stimuli-responsive applications of these emerging Bi-based materials.
  •  
7.
  • Ji, Fuxiang, et al. (författare)
  • Amine Gas‐Induced Reversible Optical Bleaching of Bismuth‐Based Lead‐Free Perovskite Thin Films
  • 2023
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Reversible optical property changes in lead-free perovskites have recently received great interest due to their potential applications in smart windows, sensors, data encryption, and various on-demand devices. However, it is challenging to achieve remarkable color changes in their thin films. Here, methylamine gas (CH3NH2, MA0) induced switchable optical bleaching of bismuth (Bi)-based perovskite films is demonstrated for the first time. By exposure to an MA0 atmosphere, the color of Cs2AgBiBr6 (CABB) films changes from yellow to transparent, and the color of Cs3Bi2I9 (CBI) films changes from dark red to transparent. More interestingly, the underlying reason is found to be the interactions between MA0 and Bi3+ with the formation of an amorphous liquefied transparent intermediate phase, which is different from that of lead-based perovskite systems. Moreover, the generality of this approach is demonstrated with other amine gases, including ethylamine (C2H5NH2, EA0) and butylamine (CH3(CH2)3NH2, BA0), and another compound, Cs3Sb2I9, by observing a similar reversible optical bleaching phenomenon. The potential for the application of CABB and CBI films in switchable smart windows is investigated. This study provides valuable insights into the interactions between amine gases and lead-free perovskites, opening up new possibilities for high-efficiency optoelectronic and stimuli-responsive applications of these emerging Bi-based materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy