SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wedlund C. Simon) "

Sökning: WFRF:(Wedlund C. Simon)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mandt, K. E., et al. (författare)
  • RPC observation of the development and evolution of plasma interaction boundaries at 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S9-S22
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the primary objectives of the Rosetta Plasma Consortium, a suite of five plasma instruments on-board the Rosetta spacecraft, is to observe the formation and evolution of plasma interaction regions at the comet 67P/Churyumov-Gerasimenko (67P/CG). Observations made between 2015 April and 2016 February show that solar wind-cometary plasma interaction boundaries and regions formed around 2015 mid-April and lasted through early 2016 January. At least two regions were observed, separated by an ion-neutral collisionopause boundary. The inner region was located on the nucleus side of the boundary and was characterized by low-energy water-group ions, reduced magnetic field pileup and enhanced electron densities. The outer region was located outside of the boundary and was characterized by reduced electron densities, water-group ions that are accelerated to energies above 100 eV and enhanced magnetic field pileup compared to the inner region. The boundary discussed here is outside of the diamagnetic cavity and shows characteristics similar to observations made on-board the Giotto spacecraft in the ion pileup region at 1P/Halley. We find that the boundary is likely to be related to ion-neutral collisions and that its location is influenced by variability in the neutral density and the solar wind dynamic pressure.
  •  
2.
  • Edberg, Niklas J. T., et al. (författare)
  • CME impact on comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S45-S56
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Rosetta observations from comet 67P/Churyumov-Gerasimenko during the impact of a coronal mass ejection (CME). The CME impacted on 2015 Oct 5-6, when Rosetta was about 800 km from the comet nucleus, and 1.4 au from the Sun. Upon impact, the plasma environment is compressed to the level that solar wind ions, not seen a few days earlier when at 1500 km, now reach Rosetta. In response to the compression, the flux of suprathermal electrons increases by a factor of 5-10 and the background magnetic field strength increases by a factor of similar to 2.5. The plasma density increases by a factor of 10 and reaches 600 cm(-3), due to increased particle impact ionization, charge exchange and the adiabatic compression of the plasma environment. We also observe unprecedentedly large magnetic field spikes at 800 km, reaching above 200 nT, which are interpreted as magnetic flux ropes. We suggest that these could possibly be formed by magnetic reconnection processes in the coma as the magnetic field across the CME changes polarity, or as a consequence of strong shears causing Kelvin-Helmholtz instabilities in the plasma flow. Due to the limited orbit of Rosetta, we are not able to observe if a tail disconnection occurs during the CME impact, which could be expected based on previous remote observations of other CME-comet interactions.
  •  
3.
  • Nilsson, Hans, et al. (författare)
  • Evolution of the ion environment of comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Rosetta spacecraft is escorting comet 67P/Churyumov-Gerasimenko from a heliocentric distance of >3.6 AU, where the comet activity was low, until perihelion at 1.24 AU. Initially, the solar wind permeates the thin comet atmosphere formed from sublimation. Aims. Using the Rosetta Plasma Consortium Ion Composition Analyzer (RPC-ICA), we study the gradual evolution of the comet ion environment, from the first detectable traces of water ions to the stage where cometary water ions accelerated to about 1 keV energy are abundant. We compare ion fluxes of solar wind and cometary origin. Methods. RPC-ICA is an ion mass spectrometer measuring ions of solar wind and cometary origins in the 10 eV-40 keV energy range. Results. We show how the flux of accelerated water ions with energies above 120 eV increases between 3.6 and 2.0 AU. The 24 h average increases by 4 orders of magnitude, mainly because high-flux periods become more common. The water ion energy spectra also become broader with time. This may indicate a larger and more uniform source region. At 2.0 AU the accelerated water ion flux is frequently of the same order as the solar wind proton flux. Water ions of 120 eV-few keV energy may thus constitute a significant part of the ions sputtering the nucleus surface. The ion density and mass in the comet vicinity is dominated by ions of cometary origin. The solar wind is deflected and the energy spectra broadened compared to an undisturbed solar wind. Conclusions. The flux of accelerated water ions moving from the upstream direction back toward the nucleus is a strongly nonlinear function of the heliocentric distance.
  •  
4.
  • Eriksson, Anders I., et al. (författare)
  • Cold and warm electrons at comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Strong electron cooling on the neutral gas in cometary comae has been predicted for a long time, but actual measurements of low electron temperature are scarce. Aims. Our aim is to demonstrate the existence of cold electrons in the inner coma of comet 67P/Churyumov-Gerasimenko and show filamentation of this plasma. Methods. In situ measurements of plasma density, electron temperature and spacecraft potential were carried out by the Rosetta Langmuir probe instrument, LAP. We also performed analytical modelling of the expanding two-temperature electron gas. Results. LAP data acquired within a few hundred km from the nucleus are dominated by a warm component with electron temperature typically 5-10 eV at all heliocentric distances covered (1.25 to 3.83 AU). A cold component, with temperature no higher than about 0.1 eV, appears in the data as short (few to few tens of seconds) pulses of high probe current, indicating local enhancement of plasma density as well as a decrease in electron temperature. These pulses first appeared around 3 AU and were seen for longer periods close to perihelion. The general pattern of pulse appearance follows that of neutral gas and plasma density. We have not identified any periods with only cold electrons present. The electron flux to Rosetta was always dominated by higher energies, driving the spacecraft potential to order -10 V. Conclusions. The warm (5-10 eV) electron population observed throughout the mission is interpreted as electrons retaining the energy they obtained when released in the ionisation process. The sometimes observed cold populations with electron temperatures below 0.1 eV verify collisional cooling in the coma. The cold electrons were only observed together with the warm population. The general appearance of the cold population appears to be consistent with a Haser-like model, implicitly supporting also the coupling of ions to the neutral gas. The expanding cold plasma is unstable, forming filaments that we observe as pulses.
  •  
5.
  • Volwerk, M., et al. (författare)
  • Solar Orbiter's first Venus flyby MAG observations of structures and waves associated with the induced Venusian magnetosphere
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The induced magnetosphere of Venus is caused by the interaction of the solar wind and embedded interplanetary magnetic field with the exosphere and ionosphere of Venus. Solar Orbiter entered Venus's magnetotail far downstream, > 70 Venus radii, of the planet and exited the magnetosphere over the north pole. This offered a unique view of the system over distances that had only been flown through before by three other missions, Mariner 10, Galileo, and BepiColombo.Aims. In this study, we study the large-scale structure and activity of the induced magnetosphere as well as the high-frequency plasma waves both in the magnetosphere and in a limited region upstream of the planet where interaction with Venus's exosphere is expected.Methods. The large-scale structure of the magnetosphere was studied with low-pass filtered data and identified events are investigated with a minimum variance analysis as well as combined with plasma data. The high-frequency plasma waves were studied with spectral analysis.Results. We find that Venus's magnetotail is very active during the Solar Orbiter flyby. Structures such as flux ropes and reconnection sites were encountered, in addition to a strong overdraping of the magnetic field downstream of the bow shock and planet. High-frequency plasma waves (up to six times the local proton cyclotron frequency) are observed in the magnetotail, which are identified as Doppler-shifted proton cyclotron waves, whereas in the upstream solar wind, these waves appear just below the proton cyclotron frequency (as expected) but are very patchy. The bow shock is quasi-perpendicular, however, expected mirror mode activity is not found directly behind it; instead, there is strong cyclotron wave power. This is most likely caused by the relatively low plasma-beta behind the bow shock. Much further downstream, magnetic hole or mirror mode structures are identified in the magnetosheath.
  •  
6.
  • Beth, Arnaud, et al. (författare)
  • First investigation of the diamagnetic cavity boundary layer with a 1D3V PIC simulation
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Amongst the different features and boundaries encountered around comets, one remains of particular interest to the plasma community: the diamagnetic cavity. Crossed for the first time at 1P/Halley during the Giotto flyby in 1986 and later met more than 700 times by the ESA Rosetta spacecraft around Comet 67P/Churyumov-Gerasimenko, this region, almost free of any magnetic field, surrounds nuclei of active comets. However, previous observations and modelling of this part of the coma have not yet provided a definitive answer as to the origin of such a cavity and on its border, the diamagnetic cavity boundary layer.Aims: We investigate which forces and equilibrium might be at play and balance the magnetic pressure at this boundary down to the spatial and temporal scales of the electrons in the 1D collisionless case. In addition, we scrutinise assumptions made in magneto-hydrodynamic and hybrid simulations of this environment and check for their validity.Methods: We simulated this region at the electron scale by means of 1D3V particle-in-cell simulations and SMILEI code.Results: Across this layer, depending on the magnetic field strength, the electric field is governed by different equilibria, with a thin double-layer forming ahead. In addition, we show that the electron distribution function departs from Maxwellian and/or gyrotropic distributions and that electrons do not behave adiabatically. We demonstrate the need to investigate this region at the electron scale in depth with fully kinetic simulations.
  •  
7.
  • Gunell, H., et al. (författare)
  • Ion acoustic waves at comet 67P/Churyumov-Gerasimenko : Observations and computations
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On 20 January 2015 the Rosetta spacecraft was at a heliocentric distance of 2.5 AU, accompanying comet 67P/Churyumov-Gerasimenko on its journey toward the Sun. The Ion Composition Analyser (RPC-ICA), other instruments of the Rosetta Plasma Consortium, and the ROSINA instrument made observations relevant to the generation of plasma waves in the cometary environment.Aims. Observations of plasma waves by the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) can be explained by dispersion relations calculated based on measurements of ions by the Rosetta Plasma Consortium Ion Composition Analyser (RPC-ICA), and this gives insight into the relationship between plasma phenomena and the neutral coma, which is observed by the Comet Pressure Sensor of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument (ROSINA-COPS).Methods. We use the simple pole expansion technique to compute dispersion relations for waves on ion timescales based on the observed ion distribution functions. These dispersion relations are then compared to the waves that are observed. Data from the instruments RPC-LAP, RPC-ICA and the mutual impedance probe (RPC-MIP) are compared to find the best estimate of the plasma density.Results. We find that ion acoustic waves are present in the plasma at comet 67P/Churyumov-Gerasimenko, where the major ion species is H2O+. The bulk of the ion distribution is cold, k(B)T(i) = 0.01 eV when the ion acoustic waves are observed. At times when the neutral density is high, ions are heated through acceleration by the solar wind electric field and scattered in collisions with the neutrals. This process heats the ions to about 1 eV, which leads to significant damping of the ion acoustic waves.Conclusions. In conclusion, we show that ion acoustic waves appear in the H2O+ plasmas at comet 67P/Churyumov-Gerasimenko and how the interaction between the neutral and ion populations affects the wave properties.
  •  
8.
  • Gunell, Herbert, et al. (författare)
  • Plasma waves confined to the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 469, s. S84-S92
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion acoustic waves were observed in the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko by the Rosetta spacecraft on 2015 August 3, when the comet was 1.25 au from the Sun. Wave spectra recorded by the Langmuir probe (RPC-LAP), peak near 200 Hz, decrease for higher frequencies and reach the noise floor at approximately 1.5 kHz. These waves were observed only when the spacecraft was in the diamagnetic cavity or at its boundary, which is identified as a sharp drop in magnetic field magnitude, measured by RPC-MAG. The plasma, on both sides of the boundary, is dominated by a cold (a few hundred K) water group ion population, one cold (k(B)T(e) similar to 0.1 eV) and one warm (k(B)T(e) similar to 10 eV) electron population. The observations are interpreted in terms of current-driven ion acoustic waves, generated by currents that flow through bulges on the boundary of the diamagnetic cavity.
  •  
9.
  •  
10.
  • Madsen, B., et al. (författare)
  • Extremely Low-Frequency Waves Inside the Diamagnetic Cavity of Comet 67P/Churyumov-Gerasimenko
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:9, s. 3854-3864
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Space Agency/Rosetta mission to comet 67P/Churyumov-Gerasimenko has provided several hundred observations of the cometary diamagnetic cavity induced by the interaction between outgassed cometary particles, cometary ions, and the solar wind magnetic field. Here we present the first electric field measurements of four preperihelion and postperihelion cavity crossings on 28 May 2015 and 17 February 2016, using the dual-probe electric field mode of the Langmuir probe (LAP) instrument of the Rosetta Plasma Consortium. We find that on large scales, variations in the electric field fluctuations capture the cavity and boundary regions observed in the already well-studied magnetic field, suggesting the electric field mode of the LAP instrument as a reliable tool to image cavity crossings. In addition, the LAP electric field mode unravels for the first time extremely low-frequency waves within two cavities. These low-frequency electrostatic waves are likely triggered by lower-hybrid waves observed in the surrounding magnetized plasma. Plain Language Summary As sunlight heats a comet nucleus, frozen volatile gases sublimate are ionized and interact with the solar wind and its embedded magnetic field, inducing a dynamical plasma environment around the comet. With the cornerstone European mission Rosetta and its 2years of near-continuous orbiting of comet 67P/Churyumov-Gerasimenko, the origin, structure, and evolution of this environment are only starting to be unveiled. Exciting are the numerous crossings of the diamagnetic cavity, the innermost plasma region from which the solar wind magnetic field is excluded. Whilst the magnetic field structure of the cavity crossings is well studied, the related electric field activity remains until now unexplored. Studying the electric field with the Langmuir probes onboard Rosetta, we find that whereas the large-scale electric field structure agrees well with the observed magnetic field behavior during cavity crossings, unexpected short-lived low-frequency electric field signals manifest themselves within the cavity. We interpret these as electrostatic waves triggered by a modulating of the cavity boundary caused by observed electrostatic waves at the same frequency in the surrounding magnetized plasma. This unravels a new aspect of the electromagnetic activity in the inner cometary environment, which is crucial for our understanding of the comet-solar wind-induced plasma environment.
  •  
11.
  • Volwerk, M., et al. (författare)
  • Magnetic holes between Earth and Mercury : BepiColombo cruise phase
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 677
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Magnetic holes are ubiquitous structures in the solar wind and in planetary magnetosheaths. They consist of a strong depression of the magnetic field strength, most likely in pressure balance through increased plasma pressure, which is convected with the plasma flow. These structures are created through a plasma temperature anisotropy, where the perpendicular temperature (with respect to the magnetic field) is greater than the parallel temperature. The occurrence rate of these magnetic holes between Earth and Mercury can give us information about how the solar wind conditions develop on their way from the Sun to the outer Solar System. They also give information about basic plasma processes such as diffusion of magnetic structures.Aims. In this study we investigate the occurrence, size, and depth of magnetic holes during the cruise phase of BepiColombo and compare them with earlier studies.Methods. The BepiColombo magnetometer data were used to find the magnetic holes. We determined the size in seconds, the depth with respect to the background field, and the rotation angle of the background field across the structure. Minimum variance analysis delivers the polarization state of the magnetic holes. A direct comparison is made to the results obtained from the MESSENGER cruise phase.Results. We find an almost constant occurrence rate for magnetic holes between Mercury and Earth. The size of the holes is determined by the plasma conditions at the location where they are created and they grow in size, due to diffusion, as they move outwards in the Solar System. The greater the rotation of the background magnetic field across the structure, the larger the minimum size of the magnetic hole is.
  •  
12.
  • Wellbrock, A., et al. (författare)
  • Observations of a Solar Energetic Particle Event from Inside and Outside the Coma of Comet 67P
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 127:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze observations of an SEP event at Rosetta’s target comet 67P/Churyumov-Gerasimenko during March 6th-10th 2015. The comet was 2.15AU from the Sun, with the Rosetta spacecraft approximately 70km from the nucleus placing it deep inside the comet’s coma and allowing us to study its response. The Eastern flank of an ICME also encountered Rosetta on March 6th and 7th. Rosetta’s RPC data indicate increases in ionization rates, and cometary water group pickup ions exceeding 1keV. Increased charge exchange reactions between solar wind ions and cometary neutrals also indicate increased upstream neutral populations consistent with enhanced SEP induced surface activity. In addition, the most intense parts of the event coincide with observations interpreted as an infant cometary bow shock, indicating that the SEPs may have enhanced the formation and/or intensified the observations. These solar transient events may also have pushed the cometopause closer to the nucleus.We track and discuss characteristics of the SEP event using remote observations by SOHO, WIND and GOES at the Sun, in-situ measurements at STEREO A, Mars and Rosetta, and ENLIL modeling. Based on its relatively prolonged duration, gradual and anisotropic nature and broad angular spread in the heliosphere, we determine the main particle acceleration source to be a distant ICME which emerged from the Sun on March 6th 2015 and was detected locally in the Martian ionosphere but was never encountered by 67P directly. The ICME’s shock produced SEPs for several days which traveled to the in-situ observation sites via magnetic field line connections.
  •  
13.
  • Yang, Lei, et al. (författare)
  • Observations of high-plasma density region in the inner coma of 67P/Churyumov-Gerasimenko during early activity
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S33-S44
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2014 September, as Rosetta transitioned to close bound orbits at 30 km from comet 67P/Churyumov-Gerasimenko, the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) data showed large systematic fluctuations in both the spacecraft potential and the collected currents. We analyse the potential bias sweeps from RPC-LAP, from which we extract three sets of parameters: (1) knee potential, that we relate to the spacecraft potential, (2) the ion attraction current, which is composed of the photoelectron emission current from the probe as well as contributions from local ions, secondary emission, and low-energy electrons, and (3) an electron current whose variation is, in turn, an estimate of the electron density variation. We study the evolution of these parameters between 4 and 3.2 au in heliocentric and cometocentric frames. We find on September 9 a transition into a high-density plasma region characterized by increased knee potential fluctuations and plasma currents to the probe. In conjunction with previous studies, the early cometary plasma can be seen as composed of two regions: an outer region characterized by solar wind plasma, and small quantities of pick-up ions, and an inner region with enhanced plasma densities. This conclusion is in agreement with other RPC instruments such as RPC-MAG, RPC-IES and RPC-ICA, and numerical simulations.
  •  
14.
  • Echim, M. M., et al. (författare)
  • A Method to Estimate the Physical Properties of Magnetospheric Generators From Observations of Quiet Discrete Auroral Arcs
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 124:12, s. 10283-10293
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss a method to estimate the properties of a magnetospheric generator using a quasi-electrostatic magnetosphere-ionosphere coupling model and in situ or remote sensing observations of discrete quiet arcs. We first construct an ensemble of Vlasov equilibrium solutions for generator structures formed at magnetospheric plasma interfaces. For each generator solution, we compute the ionospheric electric potential from the current continuity equation. Thus, we estimate the field-aligned potential drop that allows us to assess several properties of the discrete auroral arc, such as the field-aligned potential difference, the field-aligned current density, the flux of precipitating energy, and the height-integrated Pedersen conductance. A minimization procedure based on comparing the numerical results with observations is defined and applied to find which solution of the current continuity equation and which generator model give auroral arc properties that best fit the observations. The procedure is validated in a case study with observations by DMSP and Cluster and can be generalized to other types of data.
  •  
15.
  • Gunell, H, et al. (författare)
  • Acceleration of ions and nano dust at a comet in the solar wind
  • 2015
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 119, s. 13-23
  • Tidskriftsartikel (refereegranskat)abstract
    • A quasi-neutral hybrid simulation of the interaction of the solar wind with the atmosphere of a comet is used together with a test particle simulation of cometary ions and dust to compute trajectories and velocity distribution functions of charged particles, starting outside the diamagnetic cavity at 150 km cometocentric distance. The simulations are run with parameters suited to make predictions for comet 67P/Churyumov-Gerasimenko when it is at a heliocentric distance of 1.45 AU. It is found that the shape of the ion trajectories depends on the location of the source, and that a velocity distribution that is observed at a given point in space is influenced by the spatial structure of the source. Charged dust grains with radii in the 1-10 nm range are accelerated from the nucleus to a distance of 2.9 x 104 km in between 15 min and 2 h approximately. Dust particles smaller than 10 nm in radius are accelerated to speeds over 10 km/s.
  •  
16.
  • Johansson, Fredrik L., et al. (författare)
  • Rosetta photoelectron emission and solar ultraviolet flux at comet 67P
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469, s. S626-S635
  • Tidskriftsartikel (refereegranskat)abstract
    • The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting data set can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths which are important for photoionization of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 per cent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy