SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wellington Cheryl) "

Sökning: WFRF:(Wellington Cheryl)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Giannisis, Andreas, 1993- (författare)
  • Peripheral apolipoprotein E and its emerging role in neurodegenerative disease
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The human apolipoprotein E gene (APOE) is polymorphic and coding for three common alleles; ε2, ε3, and ε4. Carriers of the ε4 allele are at a higher risk of developing sporadic late-onset Alzheimer’s Disease (AD). This association appears to be influenced by inherited traits, race, and sex. The connection between APOE genotype and AD-related pathological processes has been studied excessively, however, less attention has been devoted to the apolipoprotein E (apoE) protein levels per se, most possibly due to the inconsistent results presented in studies assessing potential links between cerebrospinal fluid (CSF) apoE levels and AD, and because systemic apoE cannot cross the blood-brain barrier (BBB). Nevertheless, low plasma apoE levels were found to enhance AD and dementia risk, with the APOE ε4 genotype influencing this risk by promoting a reduction of the plasma apoE levels in some populations. In this thesis, we speculate that peripheral apoE-dependent mechanisms are linked to neurodegeneration. To address this hypothesis, we performed a set of clinical and experimental studies. In the first three studies, we aimed to determine whether hepatic APOE ε4 genotype, plasma apoE levels, and diet are linked to brain function and cognition by utilizing a mouse model with humanized-livers that are characterized by the presence of human apoE only in the plasma. A comparison between the brains of APOE ε4/ε4 and APOE ε2/ε3 humanized-liver mice revealed altered endogenous murine apoe levels as well as altered levels of synaptic, neuroinflammatory, and insulin signaling-related markers in the cortex and hippocampus. Higher plasma apoE4 levels were also linked to these associations, mainly in the hippocampus of the humanized APOE ε4/ε4 liver mice. A similar, though less pronounced, effect was observed in the brains of APOE ε3/ε3 humanized-liver mice that were fed a high-fat, versus a normal diet. Utilizing the plasma from APOE ε3/ε3 humanized-liver mice, we further observed that the distribution of apoE3 in plasma lipoparticles differed between sexes. In addition, higher total plasma apoE3 levels were beneficial to the activity levels but appeared to have a negative impact on cognition in these mice. In the remaining studies, we aimed to determine how plasma apoE levels, apoE isoform distribution, and the formation of monomers and disulfide-linked homodimers and heterodimers with apolipoprotein A-II (apoA-II) are influenced by APOE genotype and AD. For that purpose, we studied two cohorts of Norwegian, Black/African-American (B/AA), and non-Hispanic white (NHW) cognitively healthy subjects and patients with AD or mild cognitive impairment (MCI). Only in Norwegian individuals, we observed lower levels of plasma apoE due to AD and APOE ε4 genotype. In addition, in these subjects, the apoE monomer/dimer profile seemed to be influenced by AD status. In the cohort of B/AAs and NHWs, these associations were absent. In both cohorts, we observed associations between plasma apoE levels and CSF AD biomarker levels. Lastly, B/AA subjects presented the highest plasma apoE levels with APOE ε4/ε4-carrying subjects exhibiting significantly higher plasma apoE levels than NHW APOE ε4/ε4 subjects.Overall, our studies suggest that hepatic APOE genotype and plasma apoE levels are associated with AD-related neuropathological changes which seem to be influenced by other factors like race and diet. Whether this influence is due to differences in apoE levels or apoE function (i.e. different distribution between lipoparticles) remains to be investigated in future studies.
  •  
2.
  • Wang, Kevin K., et al. (författare)
  • Blood-based traumatic brain injury biomarkers : Clinical utilities and regulatory pathways in the United States, Europe and Canad
  • 2021
  • Ingår i: Expert Review of Molecular Diagnostics. - : Expert Reviews Ltd.. - 1473-7159 .- 1744-8352. ; 21:12, s. 1303-1321
  • Forskningsöversikt (refereegranskat)abstract
    • Introduction: Traumatic brain injury (TBI) is a major global health issue, resulting in debilitating consequences to families, communities, and health-care systems. Prior research has found that biomarkers aid in the pathophysiological characterization and diagnosis of TBI. Significantly, the FDA has recently cleared both a bench-top assay and a rapid point-of-care assays of tandem biomarker (UCH-L1/GFAP)-based blood test to aid in the diagnosis mTBI patients. With the global necessity of TBI biomarkers research, several major consortium multicenter observational studies with biosample collection and biomarker analysis have been created in the USA, Europe, and Canada. As each geographical region regulates its data and findings, the International Initiative for Traumatic Brain Injury Research (InTBIR) was formed to facilitate data integration and dissemination across these consortia.Areas covered: This paper covers heavily investigated TBI biomarkers and emerging non-protein markers. Finally, we analyze the regulatory pathways for converting promising TBI biomarkers into approved in-vitro diagnostic tests in the United States, European Union, and Canada.Expert opinion: TBI biomarker research has significantly advanced in the last decade. The recent approval of an iSTAT point of care test to detect mild TBI has paved the way for future biomarker clearance and appropriate clinical use across the globe.
  •  
3.
  • Zeron, Melinda M, et al. (författare)
  • Increased Sensitivity to N-Methyl-D-Aspartate Receptor-Mediated Excitotoxicity in a Mouse Model of Huntington's Disease.
  • 2002
  • Ingår i: Neuron. - 0896-6273. ; 33:6, s. 849-860
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous work suggests N-methyl-D-aspartate receptor (NMDAR) activation may be involved in degeneration of medium-sized spiny striatal neurons in Huntington's disease (HD). Here we show that these neurons are more vulnerable to NMDAR-mediated death in a YAC transgenic FVB/N mouse model of HD expressing full-length mutant huntingtin, compared with wild-type FVB/N mice. Excitotoxic death of these neurons was increased after intrastriatal injection of quinolinate in vivo, and after NMDA but not AMPA exposure in culture. NMDA-induced cell death was abolished by an NR2B subtype-specific antagonist. In contrast, NMDAR-mediated death of cerebellar granule neurons was not enhanced, consistent with cell-type and NMDAR subtype specificity. Moreover, increased NMDA-evoked current amplitude and caspase-3 activity were observed in transgenic striatal neurons. Our data support a role for NR2B-subtype NMDAR activation as a trigger for selective neuronal degeneration in HD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy