SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Werb Zena) "

Sökning: WFRF:(Werb Zena)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allaoui, Roni, et al. (författare)
  • Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Triple-negative (TN) breast cancers (ER â ' PR â ' HER2 â ') are highly metastatic and associated with poor prognosis. Within this subtype, invasive, stroma-rich tumours with infiltration of inflammatory cells are even more aggressive. The effect of myeloid cells on reactive stroma formation in TN breast cancer is largely unknown. Here, we show that primary human monocytes have a survival advantage, proliferate in vivo and develop into immunosuppressive myeloid cells expressing the myeloid-derived suppressor cell marker S100A9 only in a TN breast cancer environment. This results in activation of cancer-associated fibroblasts and expression of CXCL16, which we show to be a monocyte chemoattractant. We propose that this migratory feedback loop amplifies the formation of a reactive stroma, contributing to the aggressive phenotype of TN breast tumours. These insights could help select more suitable therapies targeting the stromal component of these tumours, and could aid prediction of drug resistance.
  •  
2.
  • Gonzalez, Hugo, et al. (författare)
  • Cellular architecture of human brain metastases
  • 2022
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674. ; 185:4, s. 20-745
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain metastasis (BrM) is the most common form of brain cancer, characterized by neurologic disability and an abysmal prognosis. Unfortunately, our understanding of the biology underlying human BrMs remains rudimentary. Here, we present an integrative analysis of >100,000 malignant and non-malignant cells from 15 human parenchymal BrMs, generated by single-cell transcriptomics, mass cytometry, and complemented with mouse model- and in silico approaches. We interrogated the composition of BrM niches, molecularly defined the blood-tumor interface, and revealed stromal immunosuppressive states enriched with infiltrated T cells and macrophages. Specific single-cell interrogation of metastatic tumor cells provides a framework of 8 functional cell programs that coexist or anticorrelate. Collectively, these programs delineate two functional BrM archetypes, one proliferative and the other inflammatory, that are evidently shaped through tumor-immune interactions. Our resource provides a foundation to understand the molecular basis of BrM in patients with tumor cell-intrinsic and host environmental traits.
  •  
3.
  •  
4.
  • Hagerling, Catharina, et al. (författare)
  • Immune effector monocyte–neutrophil cooperation induced by the primary tumor prevents metastatic progression of breast cancer
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 116:43, s. 21704-21714
  • Tidskriftsartikel (refereegranskat)abstract
    • Metastatic behavior varies significantly among breast cancers. Mechanisms explaining why the majority of breast cancer patients never develop metastatic outgrowth are largely lacking but could underlie the development of novel immunotherapeutic target molecules. Here we show interplay between nonmetastatic primary breast cancer and innate immune response, acting together to control metastatic progression. The primary tumor systemically recruits IFNγ-producing immune effector monocytes to the lung. IFNγ up-regulates Tmem173/ STING in neutrophils and enhances their killing capacity. The immune effector monocytes and tumoricidal neutrophils target disseminated tumor cells in the lungs, preventing metastatic outgrowth. Importantly, our findings could underlie the development of immunotherapeutic target molecules that augment the function of immune effector monocytes and neutrophils.
  •  
5.
  • Maller, Ori, et al. (författare)
  • Tumour-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression
  • 2020
  • Ingår i: Nature Materials. - : Springer Science and Business Media LLC. - 1476-1122 .- 1476-4660.
  • Tidskriftsartikel (refereegranskat)abstract
    • Stromal stiffening accompanies malignancy, compromises treatment and promotes tumour aggression. Clarifying the molecular nature and the factors that regulate stromal stiffening in tumours should identify biomarkers to stratify patients for therapy and interventions to improve outcome. We profiled lysyl hydroxylase-mediated and lysyl oxidase-mediated collagen crosslinks and quantified the greatest abundance of total and complex collagen crosslinks in aggressive human breast cancer subtypes with the stiffest stroma. These tissues harbour the highest number of tumour-associated macrophages, whose therapeutic ablation in experimental models reduced metastasis, and decreased collagen crosslinks and stromal stiffening. Epithelial-targeted expression of the crosslinking enzyme, lysyl oxidase, had no impact on collagen crosslinking in PyMT mammary tumours, whereas stromal cell targeting did. Stromal cells in microdissected human tumours expressed the highest level of collagen crosslinking enzymes. Immunohistochemical analysis of biopsies from a cohort of patients with breast cancer revealed that stromal expression of lysyl hydroxylase 2, an enzyme that induces hydroxylysine aldehyde-derived collagen crosslinks and stromal stiffening, correlated significantly with disease specific mortality. The findings link tissue inflammation, stromal cell-mediated collagen crosslinking and stiffening to tumour aggression and identify lysyl hydroxylase 2 as a stromal biomarker.
  •  
6.
  • Plaks, Vicki, et al. (författare)
  • Matrix metalloproteinase-9 deficiency phenocopies features of preeclampsia and intrauterine growth restriction
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:27, s. 11109-11114
  • Tidskriftsartikel (refereegranskat)abstract
    • The pregnancy complication preeclampsia (PE), which occurs in approximately 3% to 8% of human pregnancies, is characterized by placental pathologies that can lead to significant fetal and maternal morbidity and mortality. Currently, the only known cure is delivery of the placenta. As the etiology of PE remains unknown, it is vital to find models to study this common syndrome. Here we show that matrix metalloproteinase-9 (MMP9) deficiency causes physiological and placental abnormalities in mice, which mimic features of PE. As with the severe cases of this syndrome, which commence early in gestation, MMP9-null mouse embryos exhibit deficiencies in trophoblast differentiation and invasion shortly after implantation, along with intrauterine growth restriction or embryonic death. Reciprocal embryo transfer experiments demonstrated that embryonic MMP9 is a major contributor to normal implantation, but maternal MMP9 also plays a role in embryonic trophoblast development. Pregnant MMP9-null mice bearing null embryos exhibited clinical features of PE as VEGF dysregulation and proteinuria accompanied by preexisting elevated blood pressure and kidney pathology. Thus, our data show that fetal and maternal MMP9 play a role in the development of PE and establish the MMP9-null mice as a much-needed model to study the clinical course of this syndrome.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy