SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Whitmore Bradley C.) "

Sökning: WFRF:(Whitmore Bradley C.)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Daizhong, et al. (författare)
  • PHANGS–JWST First Results : Stellar-feedback-driven Excitation and Dissociation of Molecular Gas in the Starburst Ring of NGC 1365?
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS–JWST imaging with new Atacama Large Millimeter/submillimeter Array multi-J CO (1–0, 2–1 and 4–3) and [C ı] (1–0) mapping, which we use to trace CO excitation via R42 = ICO(4−3)/ICO(2−1) and R21 = ICO(2−1)/ICO(1−0) and dissociation via RCICO = I[CI](1−0)/ICO(2−1) at 330 pc resolution. We find that the gas flowing into the starburst ring from northeast to southwest appears strongly affected by stellar feedback, showing decreased excitation (lower R42) and increased signatures of dissociation (higher RCICO) in the downstream regions. There, radiative-transfer modeling suggests that the molecular gas density decreases and temperature and [CI/CO] abundance ratio increase. We compare R42 and RCICO with local conditions across the regions and find that both correlate with near-IR 2 μm emission tracing the YMCs and with both polycyclic aromatic hydrocarbon (11.3 μm) and dust continuum (21 μm) emission. In general, RCICO exhibits ∼0.1 dex tighter correlations than R42, suggesting C ı to be a more sensitive tracer of changing physical conditions in the NGC 1365 starburst than CO (4–3). Our results are consistent with a scenario where gas flows into the two arm regions along the bar, becomes condensed/shocked, forms YMCs, and then these YMCs heat and dissociate the gas.
  •  
2.
  • Finn, Molly K., et al. (författare)
  • ALMA-LEGUS. I. The Influence of Galaxy Morphology on Molecular Cloud Properties
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 964:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a comparative study of the molecular gas in two galaxies from the Legacy ExtraGalactic UV Survey (LEGUS) sample: barred spiral NGC 1313 and flocculent spiral NGC 7793. These two galaxies have similar masses, metallicities, and star formation rates, but NGC 1313 is forming significantly more massive star clusters than NGC 7793, especially young massive clusters (<10 Myr, >104M⊙). Using Atacama Large Millimeter/submillimeter Array (ALMA) CO(2–1) observations of the two galaxies with the same sensitivity and resolution (13 pc), we directly compare the molecular gas in these two similar galaxies to determine the physical conditions responsible for their large disparity in cluster formation. By fitting size–line width relations for the clouds in each galaxy, we find that NGC 1313 has a higher intercept than NGC 7793, implying that its clouds have higher kinetic energies at a given size scale. NGC 1313 also has more clouds near virial equilibrium than NGC 7793, which may be connected to its higher rate of massive cluster formation. However, these virially bound clouds do not show a stronger correlation with young clusters than with the general cloud population. We find surprisingly small differences between the distributions of molecular cloud populations in the two galaxies, though the largest of those differences is that NGC 1313 has higher surface densities and lower freefall times.
  •  
3.
  • Finn, Molly K., et al. (författare)
  • ALMA-LEGUS. II. The Influence of Subgalactic Environments on Molecular Cloud Properties
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 964:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We compare the molecular cloud properties in subgalactic regions of two galaxies, barred spiral NGC 1313, which is forming many massive clusters, and flocculent spiral NGC 7793, which is forming significantly fewer massive clusters despite having a similar star formation rate to NGC 1313. We find that there are larger variations in cloud properties between different regions within each galaxy than there are between the galaxies on a global scale, especially for NGC 1313. There are higher masses, line widths, pressures, and virial parameters in the arms of NGC 1313 and the center of NGC 7793 than in the interarm and outer regions of the galaxies. The massive cluster formation of NGC 1313 may be driven by its greater variation in environment, allowing more clouds with the necessary conditions to emerge, although no one parameter seems primarily responsible for the difference in star formation. Meanwhile NGC 7793 has clouds that are as massive and have as much kinetic energy as the clouds in the arms of NGC 1313, but have densities and pressures more similar to those in the interarm regions and so are less inclined to collapse and form stars. The cloud properties in NGC 1313 and NGC 7793 suggest that spiral arms, bars, interarm regions, and flocculent spirals each represent distinct environments with regard to molecular cloud populations. We see surprisingly little difference in surface density between the regions, suggesting that the differences in surface densities frequently seen between arm and interarm regions in lower-resolution studies are indicative of the sparsity of molecular clouds, rather than differences in their true surface density.
  •  
4.
  • Scheuermann, Fabian, et al. (författare)
  • Stellar associations powering H ii regions - I. Defining an evolutionary sequence
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 522:2, s. 2369-2383
  • Tidskriftsartikel (refereegranskat)abstract
    • Connecting the gas in H II regions to the underlying source of the ionizing radiation can help us constrain the physical processes of stellar feedback and how H II regions evolve over time. With PHANGS-MUSE, we detect nearly 24 000 H II regions across 19 galaxies and measure the physical properties of the ionized gas (e.g. metallicity, ionization parameter, and density). We use catalogues of multiscale stellar associations from PHANGS-HST to obtain constraints on the age of the ionizing sources. We construct a matched catalogue of 4177 H II regions that are clearly linked to a single ionizing association. A weak anticorrelation is observed between the association ages and the H a equi v alent width EW (H a), the H a/ FUV flux ratio, and the ionization parameter, log q . As all three are expected to decrease as the stellar population ages, this could indicate that we observe an evolutionary sequence. This interpretation is further supported by correlations between all three properties. Interpreting these as evolutionary tracers, we find younger nebulae to be more attenuated by dust and closer to giant molecular clouds, in line with recent models of feedback-regulated star formation. We also observe strong correlations with the local metallicity variations and all three proposed age tracers, suggestive of star formation preferentially occurring in locations of locally enhanced metallicity. Overall, EW (H a) and log q show the most consistent trends and appear to be most reliable tracers for the age of an H II region.
  •  
5.
  • Schinnerer, Eva, et al. (författare)
  • PHANGS-JWST First Results : Rapid Evolution of Star Formation in the Central Molecular Gas Ring of NGC 1365
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale bars can fuel galaxy centers with molecular gas, often leading to the development of dense ringlike structures where intense star formation occurs, forming a very different environment compared to galactic disks. We pair ∼0.″3 (30 pc) resolution new JWST/MIRI imaging with archival ALMA CO(2-1) mapping of the central ∼5 kpc of the nearby barred spiral galaxy NGC 1365 to investigate the physical mechanisms responsible for this extreme star formation. The molecular gas morphology is resolved into two well-known bright bar lanes that surround a smooth dynamically cold gas disk (R gal ∼ 475 pc) reminiscent of non-star-forming disks in early-type galaxies and likely fed by gas inflow triggered by stellar feedback in the lanes. The lanes host a large number of JWST-identified massive young star clusters. We find some evidence for temporal star formation evolution along the ring. The complex kinematics in the gas lanes reveal strong streaming motions and may be consistent with convergence of gas streamlines expected there. Indeed, the extreme line widths are found to be the result of inter-“cloud” motion between gas peaks; ScousePy decomposition reveals multiple components with line widths of 〈σ CO,scouse〉 ≈ 19 km s−1 and surface densities of 〈 Σ H 2 , scouse 〉 ≈ 800 M ⊙ pc − 2 , similar to the properties observed throughout the rest of the central molecular gas structure. Tailored hydrodynamical simulations exhibit many of the observed properties and imply that the observed structures are transient and highly time-variable. From our study of NGC 1365, we conclude that it is predominantly the high gas inflow triggered by the bar that is setting the star formation in its CMZ.
  •  
6.
  • Thilker, David A., et al. (författare)
  • PHANGS–JWST First Results : The Dust Filament Network of NGC 628 and Its Relation to Star Formation Activity
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • PHANGS–JWST mid-infrared (MIR) imaging of nearby spiral galaxies has revealed ubiquitous filaments of dust emission in intricate detail. We present a pilot study to systematically map the dust filament network (DFN) at multiple scales between 25 and 400 pc in NGC 628. MIRI images at 7.7, 10, 11.3, and 21 μm of NGC 628 are used to generate maps of the filaments in emission, while PHANGS–HST B-band imaging yields maps of dust attenuation features. We quantify the correspondence between filaments traced by MIR thermal continuum/polycyclic aromatic hydrocarbon (PAH) emission and filaments detected via extinction/scattering of visible light; the fraction of MIR flux contained in the DFN; and the fraction of H ii regions, young star clusters, and associations within the DFN. We examine the dependence of these quantities on the physical scale at which the DFN is extracted. With our highest-resolution DFN maps (25 pc filament width), we find that filaments in emission and attenuation are cospatial in 40% of sight lines, often exhibiting detailed morphological agreement; that ∼30% of the MIR flux is associated with the DFN; and that 75%–80% of the star formation in H ii regions and 60% of the mass in star clusters younger than 5 Myr are contained within the DFN. However, the DFN at this scale is anticorrelated with looser associations of stars younger than 5 Myr identified using PHANGS–HST near-UV imaging. We discuss the impact of these findings on studies of star formation and the interstellar medium, and the broad range of new investigations enabled by multiscale maps of the DFN.
  •  
7.
  • Hannon, Stephen, et al. (författare)
  • Star cluster classification using deep transfer learning with PHANGS-HST
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 526:2, s. 2991-3006
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently available star cluster catalogues from the Hubble Space Telescope (HST) imaging of nearby galaxies heavily rely on visual inspection and classification of candidate clusters. The time-consuming nature of this process has limited the production of reliable catalogues and thus also post-observation analysis. To address this problem, deep transfer learning has recently been used to create neural network models that accurately classify star cluster morphologies at production scale for nearby spiral galaxies (D ≲ 20 Mpc). Here, we use HST ultraviolet (UV)–optical imaging of over 20 000 sources in 23 galaxies from the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) survey to train and evaluate two new sets of models: (i) distance-dependent models, based on cluster candidates binned by galaxy distance (9–12, 14–18, and 18–24 Mpc), and (ii) distance-independent models, based on the combined sample of candidates from all galaxies. We find that the overall accuracy of both sets of models is comparable to previous automated star cluster classification studies (∼60–80 per cent) and shows improvement by a factor of 2 in classifying asymmetric and multipeaked clusters from PHANGS-HST. Somewhat surprisingly, while we observe a weak negative correlation between model accuracy and galactic distance, we find that training separate models for the three distance bins does not significantly improve classification accuracy. We also evaluate model accuracy as a function of cluster properties such as brightness, colour, and spectral energy distribution (SED)-fit age. Based on the success of these experiments, our models will provide classifications for the full set of PHANGS-HST candidate clusters (N ∼ 200 000) for public release.
  •  
8.
  • Hunter, Deidre A., et al. (författare)
  • A Comparison of Young Star Properties with Local Galactic Environment for LEGUS/LITTLE THINGS Dwarf Irregular Galaxies
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 156:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We have explored the role environmental factors play in determining characteristics of young stellar objects in nearby dwarf irregular and blue compact dwarf galaxies. Star clusters are characterized by concentrations, masses, and formation rates; OB associations by mass and mass surface density; O stars by their numbers and near-ultraviolet absolute magnitudes; and H II regions by H alpha surface brightnesses. These characteristics are compared to surrounding galactic pressure, stellar mass density, H I surface density, and star formation rate (SFR) surface density. We find no trend of cluster characteristics with environmental properties, implying that larger-scale effects are more important in determining cluster characteristics or that rapid dynamical evolution erases any memory of the initial conditions. On the other hand, the most massive OB associations are found at higher pressure and H I surface density, and there is a trend of higher H II region H alpha surface brightness with higher pressure, suggesting that a higher concentration of massive stars and gas is found preferentially in regions of higher pressure. At low pressures we find massive stars but not bound clusters and OB associations. We do not find evidence for an increase of cluster formation efficiency as a function of SFR density. However, there is an increase in the ratio of the number of clusters to the number of O stars with increasing pressure, perhaps reflecting an increase in clustering properties with SFR.
  •  
9.
  • Krumholz, Mark R., et al. (författare)
  • STAR CLUSTER PROPERTIES IN TWO LEGUS GALAXIES COMPUTED WITH STOCHASTIC STELLAR POPULATION SYNTHESIS MODELS
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 812:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate a novel Bayesian analysis method, based on the Stochastically Lighting Up Galaxies (slug) code, to derive the masses, ages, and extinctions of star clusters from integrated light photometry. Unlike many analysis methods, slug correctly accounts for incomplete initial mass function (IMF) sampling, and returns full posterior probability distributions rather than simply probability maxima. We apply our technique to 621 visually confirmed clusters in two nearby galaxies, NGC 628 and NGC 7793, that are part of the Legacy Extragalactic UV Survey (LEGUS). LEGUS provides Hubble Space Telescope photometry in the NUV, U, B, V, and I bands. We analyze the sensitivity of the derived cluster properties to choices of prior probability distribution, evolutionary tracks, IMF, metallicity, treatment of nebular emission, and extinction curve. We find that slug's results for individual clusters are insensitive to most of these choices, but that the posterior probability distributions we derive are often quite broad, and sometimes multi-peaked and quite sensitive to the choice of priors. In contrast, the properties of the cluster population as a whole are relatively robust against all of these choices. We also compare our results from slug to those derived with a conventional non-stochastic fitting code, Yggdrasil. We show that slug's stochastic models are generally a better fit to the observations than the deterministic ones used by Yggdrasil. However, the overall properties of the cluster populations recovered by both codes are qualitatively similar.
  •  
10.
  • Larson, Kirsten L., et al. (författare)
  • Multiscale stellar associations across the star formation hierarchy in PHANGS-HST nearby galaxies : methodology and properties
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:4, s. 6061-6081
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop a method to identify and determine the physical properties of stellar associations using Hubble Space Telescope (HST) NUV−U−B−V−I imaging of nearby galaxies from the Physics at High Angular Resolution in Nearby GalaxieS with the Hubble Space Telescope (PHANGS–HST) survey. We apply a watershed algorithm to density maps constructed from point source catalogues Gaussian smoothed to multiple physical scales from 8 to 64 pc. We develop our method on two galaxies that span the distance range in the PHANGS–HST sample: NGC 3351 (10 Mpc) and NGC 1566 (18 Mpc). We test our algorithm with different parameters such as the choice of detection band for the point source catalogue (NUV or V), source density image filtering methods, and absolute magnitude limits. We characterize the properties of the resulting multiscale associations, including sizes, number of tracer stars, number of associations, and photometry, as well as ages, masses, and reddening from spectral energy distribution fitting. Our method successfully identifies structures that occupy loci in the UBVI colour–colour diagram consistent with previously published catalogues of clusters and associations. The median ages of the associations increase from log(age/yr) = 6.6 to log(age/yr) = 6.9 as the spatial scale increases from 8 to 64 pc for both galaxies. We find that the youngest stellar associations, with ages <3 Myr, indeed closely trace H II regions in H α imaging, and that older associations are increasingly anticorrelated with the H α emission. Owing to our new method, the PHANGS–HST multiscale associations provide a far more complete census of recent star formation activity than found with previous cluster and compact association catalogues.
  •  
11.
  • Hernandez, Svea, et al. (författare)
  • First Cospatial Comparison of Stellar, Neutral-gas, and Ionized-gas Metallicities in a Metal-rich Galaxy : M83
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 908:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We carry out a comparative analysis of the metallicities from the stellar, neutral-gas, and ionized-gas components in the metal-rich spiral galaxy M83. We analyze spectroscopic observations taken with the Hubble Space Telescope, the Large Binocular Telescope, and the Very Large Telescope. We detect a clear depletion of the H i gas, as observed from the H i column densities in the nuclear region of this spiral galaxy. We find column densities of log[N(H i) cm−2] < 20.0 at galactocentric distances of <0.18 kpc, in contrast to column densities of log[N(H i) cm−2] ~ 21.0 in the galactic disk, a trend observed in other nearby spiral galaxies. We measure a metallicity gradient of −0.03 ± 0.01 dex kpc−1 for the ionized gas, comparable to the metallicity gradient of a local benchmark of 49 nearby star-forming galaxies of −0.026 ± 0.002 dex kpc−1. Our cospatial metallicity comparison of the multiphase gas and stellar populations shows excellent agreement outside of the nucleus of the galaxy, hinting at a scenario where the mixing of newly synthesized metals from the most massive stars in the star clusters takes longer than their lifetimes (~10 Myr). Finally, our work shows that caution must be taken when studying the metallicity gradient of the neutral-gas component in star-forming galaxies, since this can be strongly biased, as these environments can be dominated by molecular gas. In these regions the typical metallicity tracers can provide inaccurate abundances, as they may trace both the neutral- and molecular-gas components.
  •  
12.
  • Watkins, Elizabeth J., et al. (författare)
  • PHANGS-JWST First Results : A Statistical View on Bubble Evolution in NGC 628
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The first JWST observations of nearby galaxies have unveiled a rich population of bubbles that trace the stellar-feedback mechanisms responsible for their creation. Studying these bubbles therefore allows us to chart the interaction between stellar feedback and the interstellar medium, and the larger galactic flows needed to regulate star formation processes globally. We present the first catalog of bubbles in NGC 628, visually identified using Mid-Infrared Instrument F770W Physics at High Angular resolution in Nearby GalaxieS (PHANGS)-JWST observations, and use them to statistically evaluate bubble characteristics. We classify 1694 structures as bubbles with radii between 6 and 552 pc. Of these, 31% contain at least one smaller bubble at their edge, indicating that previous generations of star formation have a local impact on where new stars form. On large scales, most bubbles lie near a spiral arm, and their radii increase downstream compared to upstream. Furthermore, bubbles are elongated in a similar direction to the spiral-arm ridgeline. These azimuthal trends demonstrate that star formation is intimately connected to the spiral-arm passage. Finally, the bubble size distribution follows a power law of index p = -2.2 +/- 0.1, which is slightly shallower than the theoretical value by 1-3.5 sigma that did not include bubble mergers. The fraction of bubbles identified within the shells of larger bubbles suggests that bubble merging is a common process. Our analysis therefore allows us to quantify the number of star-forming regions that are influenced by an earlier generation, and the role feedback processes have in setting the global star formation rate. With the full PHANGS-JWST sample, we can do this for more galaxies.
  •  
13.
  • Whitmore, Bradley C., et al. (författare)
  • LEGUS and H-alpha-LEGUS Observations of Star Clusters in NGC 4449 : Improved Ages and the Fraction of Light in Clusters as a Function of Age
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 889:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new catalog and results for the cluster system of the starburst galaxy NGC 4449, based on multiband imaging observations taken as part of the LEGUS and H-alpha-LEGUS surveys. We improve the spectral energy fitting method used to estimate cluster ages, and find that the results, particularly for older clusters, are in better agreement with those from spectroscopy. The inclusion of H-alpha measurements, the role of stochasticity for low-mass clusters, the assumptions about reddening, and the choices of SSP model and metallicity all have important impacts on the age dating of clusters. A comparison with ages derived from stellar color-magnitude diagrams for partially resolved clusters shows reasonable agreement, but large scatter in some cases. The fraction of light found in clusters relative to the total light (i.e., T-L) in the U, B, and V filters in 25 different approximate to kiloparsec-size regions throughout NGC 4449 correlates with both the specific region luminosity, R-L, and the dominant age of the underlying stellar population in each region. The observed cluster age distribution is found to decline over time as dN/d tau proportional to tau(gamma), with gamma = -0.85 +/- 0.15, independent of cluster mass, and is consistent with strong, early cluster disruption. The mass functions of the clusters can be described by a power law with dN/dM proportional to M-beta and beta = -1.86 +/- 2, independent of cluster age. The mass and age distributions are quite resilient to differences in age-dating methods. There is tentative evidence for a factor of 2-3 enhancement in both the star and cluster formation rate approximate to 100-300 Myr ago, indicating that cluster formation tracks star formation generally. The enhancement is probably associated with an earlier interaction event.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy