SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Widenmeyer Marc) "

Sökning: WFRF:(Widenmeyer Marc)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dorn, Katharina, et al. (författare)
  • Dark Matter : Peculiarities within the Li1−xRE5+xW8O32 series (RE = Dy − Lu)
  • 2021
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier BV. - 0925-8388 .- 1873-4669. ; 868
  • Tidskriftsartikel (refereegranskat)abstract
    • The derivatives of the Li1−xRE5+xW8O32 series (RE = Dy–Lu) all crystallize C-centered in the monoclinic system (a = 1897–1909 pm, b = 560–562 pm, c = 1127–1152 pm, β ≈ 111.1°, Z = 2). In the crystal structures of all representatives there are atomic positions, which show a mixed occupation of Li+ and the respective RE3+ cations. For RE = Dy this ratio is determined to be 1:1, resulting in space group C2/c. For RE = Ho–Lu, two crystallographically distinguishable positions exhibit the aforementioned mixed occupation with one of these being preferably occupied with Li+ and the other with RE3+ cations, causing the inversion symmetry to be lost, thus, their structure solution is best performed non-centrosymmetrically in space group C2. Furthermore, in the overall structure a deficiency of lithium with respect to the ideal formula LiRE5W8O32 was determined by both single crystal and neutron diffraction experiments and therefore the composition can be described better as Li1−xRE5+xW8O32. The resulting excess of positive charges in the formula is compensated by a partial reduction of the tungsten cations from their highest oxidation state, which is also indicated by the dark blue, almost black color of the compounds and was supported by magnetic susceptibility and electron paramagnetic resonance (EPR) measurements.
  •  
2.
  • Klein, Andreas, et al. (författare)
  • The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics
  • 2023
  • Ingår i: Journal of Electroceramics. - 1573-8663 .- 1385-3449. ; 51
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.
  •  
3.
  • Widenmeyer, Marc, et al. (författare)
  • Effects of nanodomains on local and long-range phase transitions in perovskite-type Eu0.8Ca0.2TiO3–δ
  • 2020
  • Ingår i: Nanomaterials. - : MDPI AG. - 2079-4991. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The determination of reversible phase transitions in the perovskite-type thermoelectric oxide Eu0.8Ca0.2TiO3–δ is fundamental, since structural changes largely affect the thermal and electrical transport properties. The phase transitions were characterized by heat capacity measurements, Rietveld refinements, and pair distribution function (PDF) analysis of the diffraction data to achieve information on the phase transition temperatures and order as well as structural changes on the local level and the long range. On the long-range scale, Eu0.8Ca0.2TiO3–δ showed a phase transition sequence during heating from cubic at 100 < T < 592 K to tetragonal and finally back to cubic at T > 846 K. The phase transition at T = 592 K (diffraction)/606 K (thermal analysis) was reversible with a very small thermal hysteresis of about 2 K. The local structure at 100 K was composed of a complex nanodomain arrangement of Amm2-and Pbnm-like local structures with different coherence lengths. Since in Eu0.8Ca0.2TiO3–δ the amount of Pbnm domains was too small to percolate, the competition of ferroelectrically distorted octahedra (Amm2 as in BaTiO3) and rigid, tilted octahedra (Pbnm as in CaTiO3) resulted in a cubic long-range structure at low temperatures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy