SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wik Martin) "

Sökning: WFRF:(Wik Martin)

  • Resultat 1-25 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aben, Ralf C. H., et al. (författare)
  • Cross continental increase in methane ebullition under climate change
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) strongly contributes to observed global warming. As natural CH4 emissions mainly originate from wet ecosystems, it is important to unravel how climate change may affect these emissions. This is especially true for ebullition (bubble flux from sediments), a pathway that has long been underestimated but generally dominates emissions. Here we show a remarkably strong relationship between CH4 ebullition and temperature across a wide range of freshwater ecosystems on different continents using multi-seasonal CH4 ebullition data from the literature. As these temperature-ebullition relationships may have been affected by seasonal variation in organic matter availability, we also conducted a controlled year-round mesocosm experiment. Here 4 degrees C warming led to 51% higher total annual CH4 ebullition, while diffusion was not affected. Our combined findings suggest that global warming will strongly enhance freshwater CH4 emissions through a disproportional increase in ebullition (6-20% per 1 degrees C increase), contributing to global warming.
  •  
3.
  • Arm, Maria, et al. (författare)
  • How Does the European Recovery Target for Construction & Demolition Waste Affect Resource Management?
  • 2017
  • Ingår i: Waste and Biomass Valorization. - : Springer Netherlands. - 1877-2641 .- 1877-265X. ; 8:5, s. 1491-1504
  • Tidskriftsartikel (refereegranskat)abstract
    • The revised EU Waste Framework Directive (WFD) includes a 70 % target for recovery of construction and demolition (C&D) waste. In order to study the potential change in the resource management of the main C&D waste fractions, as a consequence of fulfilling the WFD target, a Nordic project (ENCORT-CDW) has been performed. Waste fractions studied included asphalt, concrete, bricks, track ballast, gypsum-based construction materials and wood. Recovery scenarios were identified and estimations were made regarding expected savings of primary materials, impact on transport, and pollution and emissions. For wood waste, the main differences between re-use, material recycling and energy recovery were evaluated in a carbon footprint screening based on life cycle assessment methodology. The study concluded that the EU recovery target does not ensure a resource efficient and environmentally sustainable waste recovery in its present form since: It is very sensitive to how the legal definitions of waste and recovery are interpreted in the Member States. This means that certain construction material cycles might not count in the implementation reports while other, less efficient and environmentally safe, recovery processes of the same material will count. It is weight-based and consequently favours large and heavy waste streams. The result is that smaller flows with equal or larger resource efficiency and environmental benefit will be insignificant for reaching the target. It does not distinguish between the various recovery processes, meaning that resource efficient and environmentally safe recovery cannot be given priority. Improved knowledge on C&D waste generation and handling, as well as on content and emissions of dangerous substances, is required to achieve a sustainable recovery.
  •  
4.
  • Björkesten, Johan, et al. (författare)
  • Stability of Proteins in Dried Blood Spot Biobanks.
  • 2017
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 16:7, s. 1286-1296
  • Tidskriftsartikel (refereegranskat)abstract
    • An important motivation for the construction of biobanks is to discover biomarkers that identify diseases at early, potentially curable stages. This will require biobanks from large numbers of individuals, preferably sampled repeatedly, where the samples are collected and stored under conditions that preserve potential biomarkers. Dried blood samples are attractive for biobanking because of the ease and low cost of collection and storage. Here we have investigated their suitability for protein measurements. 92 proteins with relevance for oncology were analyzed using multiplex proximity extension assays (PEA) in dried blood spots collected on paper and stored for up to 30 years at either +4°C or -24°C. Our main findings were that 1) the act of drying only slightly influenced detection of blood proteins (average correlation of 0.970), and in a reproducible manner (correlation of 0.999), 2) detection of some proteins was not significantly affected by storage over the full range of three decades (34% and 76% of the analyzed proteins at +4°C and -24°C, respectively), while levels of others decreased slowly during storage with half-lives in the range of 10 to 50 years, and 3) detectability of proteins was less affected in dried samples stored at -24°C compared to at +4°C, as the median protein abundance had decreased to 80% and 93% of starting levels after 10 years of storage at +4°C or -24°C, respectively. The results of our study are encouraging as they suggest an inexpensive means to collect large numbers of blood samples, even by the donors themselves, and to transport, and store biobanked samples as spots of whole blood dried on paper. Combined with emerging means to measure hundreds or thousands of protein, such biobanks could prove of great medical value by greatly enhancing discovery as well as routine analysis of blood biomarkers.
  •  
5.
  • Burke, S. A., et al. (författare)
  • Long-Term Measurements of Methane Ebullition From Thaw Ponds
  • 2019
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 124:7, s. 2208-2221
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic regions are experiencing rapid warming, leading to permafrost thaw and formation of numerous water bodies. Although small ponds in particular are considered hot spots for methane (CH4) release, long-term studies of CH4 efflux from these surfaces are rare. We have collected an extensive data set of CH4 ebullition (bubbling) measurements from eight small thaw ponds (<0.001 km(2)) with different physical and hydrological characteristics over four summer seasons, the longest set of observations from thaw ponds to date. The measured fluxes were highly variable with an average of 20.0 mg CH4 . m(-2) . day(-1) (median: 4.1 mg CH4 . m(-2) . day(-1), n = 2,063) which is higher than that of most nearby lakes. The ponds were categorized into four types based on clear and significant differences in bubble flux. We found that the amount of CH4 released as bubbles from ponds was very weakly correlated with environmental variables, like air temperature and atmospheric pressure, and was potentially more related to differences in physical characteristics of the ponds. Using our measured average daily bubble flux plus the available literature, we estimate circumpolar thaw ponds <0.001 km(2) in size to emit between 0.2 and 1.0 Tg of CH4 through ebullition. Our findings exemplify the importance of high-frequency measurements over long study periods in order to adequately capture the variability of these water bodies. Through the expansion of current spatial and temporal monitoring efforts, we can increase our ability to estimate CH4 emissions from permafrost pond ecosystems now and in the future.
  •  
6.
  • Douglas, Peter M. J., et al. (författare)
  • Clumped Isotopes Link Older Carbon Substrates With Slower Rates of Methanogenesis in Northern Lakes
  • 2020
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The release of long-stored carbon from thawed permafrost could fuel increased methanogenesis in northern lakes, but it remains unclear whether old carbon substrates released from permafrost are metabolized as rapidly by methanogenic microbial communities as recently produced organic carbon. Here, we apply methane (CH4) clumped isotope (Delta(18)) and C-14 measurements to test whether rates of methanogenesis are related to carbon substrate age. Results from culture experiments indicate that Delta(18) values are negatively correlated with CH4 production rate. Measurements of ebullition samples from thermokarst lakes in Alaska and glacial lakes in Sweden indicate strong negative correlations between CH4 Delta(18) and the fraction modern carbon. These correlations imply that CH4 derived from older carbon substrates is produced relatively slowly. Relative rates of methanogenesis, as inferred from Delta(18) values, are not positively correlated with CH4 flux estimates, highlighting the likely importance of environmental variables other than CH4 production rates in controlling ebullition fluxes. Plain Language Summary There is concern that carbon from thawed permafrost will be emitted to the atmosphere as methane (CH4). It is currently uncertain whether old organic carbon from thawed permafrost can be converted to CH4 as rapidly as organic carbon recently fixed by primary producers. We address this question by combining radiocarbon and clumped isotope measurements of CH4 from lakes in permafrost landscapes. Radiocarbon (C-14) measurements indicate the age of CH4 carbon sources. We present data from culture experiments that support the hypothesis that clumped isotope values are dependent on microbial CH4 production rate. In lake bubble samples, we observe a strong correlation between these two measurements, which implies that CH4 formed from older carbon is produced relatively slowly. We also find that higher rates of CH4 production, as inferred from clumped isotopes, are not linked to higher rates of CH4 emissions, implying that variables other than CH4 production rate strongly influence emission rates.
  •  
7.
  • Douglas, P. M. J., et al. (författare)
  • Diverse origins of Arctic and Subarctic methane point source emissions identified with multiply-substituted isotopologues
  • 2016
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 188, s. 163-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane is a potent greenhouse gas, and there are concerns that its natural emissions from the Arctic could act as a substantial positive feedback to anthropogenic global warming. Determining the sources of methane emissions and the biogeochemical processes controlling them is important for understanding present and future Arctic contributions to atmospheric methane budgets. Here we apply measurements of multiply-substituted isotopologues, or clumped isotopes, of methane as a new tool to identify the origins of ebullitive fluxes in Alaska, Sweden and the Arctic Ocean. When methane forms in isotopic equilibrium, clumped isotope measurements indicate the formation temperature. In some microbial methane, however, non-equilibrium isotope effects, probably related to the kinetics of methanogenesis, lead to low clumped isotope values. We identify four categories of emissions in the studied samples: thermogenic methane, deep subsurface or marine microbial methane formed in isotopic equilibrium, freshwater microbial methane with non-equilibrium clumped isotope values, and mixtures of deep and shallow methane (i.e., combinations of the first three end members). Mixing between deep and shallow methane sources produces a non-linear variation in clumped isotope values with mixing proportion that provides new constraints for the formation environment of the mixing end-members. Analyses of microbial methane emitted from lakes, as well as a methanol-consuming methanogen pure culture, support the hypothesis that non-equilibrium clumped isotope values are controlled, in part, by kinetic isotope effects induced during enzymatic reactions involved in methanogenesis. Our results indicate that these kinetic isotope effects vary widely in microbial methane produced in Arctic lake sediments, with non-equilibrium Delta(18) values spanning a range of more than 5 parts per thousand.
  •  
8.
  • Emerson, Joanne B., et al. (författare)
  • Diverse sediment microbiota shape methane emission temperature sensitivity in Arctic lakes
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern post-glacial lakes are significant, increasing sources of atmospheric carbon through ebullition (bubbling) of microbially-produced methane (CH4) from sediments. Ebullitive CH4 flux correlates strongly with temperature, reflecting that solar radiation drives emissions. However, here we show that the slope of the temperature-CH4 flux relationship differs spatially across two post-glacial lakes in Sweden. We compared these CH4 emission patterns with sediment microbial (metagenomic and amplicon), isotopic, and geochemical data. The temperature-associated increase in CH4 emissions was greater in lake middles—where methanogens were more abundant—than edges, and sediment communities were distinct between edges and middles. Microbial abundances, including those of CH4-cycling microorganisms and syntrophs, were predictive of porewater CH4 concentrations. Results suggest that deeper lake regions, which currently emit less CH4 than shallower edges, could add substantially to CH4 emissions in a warmer Arctic and that CH4 emission predictions may be improved by accounting for spatial variations in sediment microbiota.
  •  
9.
  • Jammet, Mathilde, et al. (författare)
  • Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:22, s. 5189-5216
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes and wetlands, common ecosystems of the high northern latitudes, exchange large amounts of the climate-forcing gases methane (CH4) and carbon dioxide (CO2) with the atmosphere. The magnitudes of these fluxes and the processes driving them are still uncertain, particularly for subarctic and Arctic lakes where direct measurements of CH4 and CO2 emissions are often of low temporal resolution and are rarely sustained throughout the entire year. Using the eddy covariance method, we measured surface-atmosphere exchange of CH4 and CO2 during 2.5 years in a thawed fen and a shallow lake of a subarctic peatland complex. Gas exchange at the fen exhibited the expected seasonality of a subarctic wetland with maximum CH4 emissions and CO2 uptake in summer, as well as low but continuous emissions of CH4 and CO2 throughout the snow-covered winter. The seasonality of lake fluxes differed, with maximum CO2 and CH4 flux rates recorded at spring thaw. During the ice-free seasons, we could identify surface CH4 emissions as mostly ebullition events with a seasonal trend in the magnitude of the release, while a net CO2 flux indicated photosynthetic activity. We found correlations between surface CH4 emissions and surface sediment temperature, as well as between diel CO2 uptake and diel solar input. During spring, the breakdown of thermal stratification following ice thaw triggered the degassing of both CH4 and CO2. This spring burst was observed in 2 consecutive years for both gases, with a large inter-annual variability in the magnitude of the CH4 degassing. On the annual scale, spring emissions converted the lake from a small CO2 sink to a CO2 source: 80% of total annual carbon emissions from the lake were emitted as CO2. The annual total carbon exchange per unit area was highest at the fen, which was an annual sink of carbon with respect to the atmosphere. Continuous respiration during the winter partly counteracted the fen summer sink by accounting for, as both CH4 and CO2, 33% of annual carbon exchange. Our study shows (1) the importance of overturn periods (spring or fall) for the annual CH4 and CO2 emissions of northern lakes, (2) the significance of lakes as atmospheric carbon sources in subarctic landscapes while fens can be a strong carbon sink, and (3) the potential for ecosystem-scale eddy covariance measurements to improve the understanding of short-term processes driving lake-atmosphere exchange of CH4 and CO2.
  •  
10.
  • Jansen, Joachim, et al. (författare)
  • Climate‐Sensitive Controls on Large Spring Emissions of CH4 and CO2 From Northern Lakes
  • 2019
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 124:7, s. 2379-2399
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern lakes are important sources of the climate forcing trace gases methane (CH4) and carbon dioxide (CO2). A substantial portion of lakes' annual emissions can take place immediately after ice melt in spring. The drivers of these fluxes are neither well constrained nor fully understood. We present a detailed carbon gas budget for three subarctic lakes, using 6 years of eddy covariance and 9 years of manual flux measurements. We combine measurements of temperature, dissolved oxygen, and CH4 stable isotopologues to quantify functional relationships between carbon gas production and conversion, energy inputs, and the redox regime. Spring emissions were regulated by the availability of oxygen in winter, rather than temperature as during ice‐free conditions. Under‐ice storage increased predictably with ice‐cover duration, and CH4 accumulation rates (25 ± 2 mg CH4‐C·m−2·day−1) exceeded summer emissions (19 ± 1 mg CH4‐C·m−2·day−1). The seasonally ice‐covered lakes emitted 26–59% of the annual CH4 flux and 15–30% of the annual CO2 flux at ice‐off. Reduced spring emissions were associated with winter snowmelt events, which can transport water downstream and oxygenate the water column. Stable isotopes indicate that 64–96% of accumulated CH4 escaped oxidation, implying that a considerable portion of the dissolved gases produced over winter may evade to the atmosphere.
  •  
11.
  • Jansen, Joachim, et al. (författare)
  • Drivers of diffusive lake CH4 emissions on daily to multi-year time scales
  • 2020
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:7, s. 1911-1932
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes and reservoirs are important emitters of climate forcing trace gases. Various environmental drivers of the flux, such as temperature and wind speed, have been identified, but their relative importance remains poorly understood. Here we use an extensive field dataset to disentangle physical and biogeochemical controls on the turbulence-driven diffusive flux of methane (CH4) on daily to multi-year timescales. We compare 8 years of floating chamber fluxes from three small, shallow subarctic lakes (2010–2017, n = 1306) with fluxes computed using 9 years of surface water concentration measurements (2009–2017, n = 606) and a small-eddy surface renewal model informed by in situ meteorological observations. Chamber fluxes averaged 6.9 ± 0.3 mg m−2 d−1 and gas transfer velocities (k600) from the chamber-calibrated surface renewal model averaged 4.0 ± 0.1 cm h−1. We find robust (R2 ≥ 0.93, p < 0.01) Arrhenius-type temperature functions of the CH4 flux (Ea' = 0.90 ± 0.14 eV) and of the surface CH4 concentration (Ea' = 0.88 ± 0.09 eV). Chamber derived gas transfer velocities tracked the power-law wind speed relation of the model (k ∝ u3/4). While the flux increased with wind speed, during storm events (U10 ≥ 6.5 m s−1) emissions were reduced by rapid water column degassing. Spectral analysis revealed that on timescales shorter than a month emissions were driven by wind shear, but on longer timescales variations in water temperature governed the flux, suggesting emissions were strongly coupled to production. Our findings suggest that accurate short- and long term projections of lake CH4 emissions can be based on distinct weather- and climate controlled drivers of the flux.
  •  
12.
  •  
13.
  • Jansen, Joachim, et al. (författare)
  • Temperature Proxies as a Solution to Biased Sampling of Lake Methane Emissions
  • 2020
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Lake emissions of the climate forcing trace gas methane (CH4) are spatiotemporally variable, but biases in flux measurements arising from undersampling are poorly quantified. We use a multiyear data set (2009-2017) of ice-free CH(4)emissions from three subarctic lakes obtained with bubble traps (n = 14,677), floating chambers (n = 1,306), and surface concentrations plus a gas transfer model (n = 535) to quantify these biases and evaluate corrections. Sampling primarily in warmer summer months, as is common, overestimates the ice-free season flux by a factor 1.4-1.8. Temperature proxies based on Arrhenius functions that closely fit measured fluxes (R-2 >= 0.93) enable gap filling the colder months of the ice-free season and reduce sampling bias. Ebullition (activation energy 1.36 eV) expressed greater temperature sensitivity than diffusion (1.00 eV). Resolving seasonal and interannual variability in fluxes with proxies requires similar to 135 sampling days for ebullition, and 22 and 14 days for diffusion via models and chambers, respectively.
  •  
14.
  • Nguyen, Thanh Duc, et al. (författare)
  • Technical note: Greenhouse gas flux studies: an automated online system for gas emission measurements in aquatic environments
  • 2020
  • Ingår i: Hydrology and Earth System Sciences. - : COPERNICUS GESELLSCHAFT MBH. - 1027-5606 .- 1607-7938. ; 24:7, s. 3417-3430
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquatic ecosystems are major sources of greenhouse gases (GHGs). Robust measurements of natural GHG emissions are vital for evaluating regional to global carbon budgets and for assessing climate feedbacks of natural emissions to improve climate models. Diffusive and ebullitive (bubble) transport are two major pathways of gas release from surface waters. To capture the high temporal variability of these fluxes in a well-defined footprint, we designed and built an inexpensive device that includes an easily mobile diffusive flux chamber and a bubble counter all in one. In addition to automatically collecting gas samples for subsequent various analyses in the laboratory, this device also utilized a low-cost carbon dioxide (CO2) sensor (SenseAir, Sweden) and methane (CH4) sensor (Figaro, Japan) to measure GHG fluxes. Each of the devices was equipped with an XBee module to enable local radio communication (DigiMesh network) for time synchronization and data readout at a server controller station on the lakeshore. The software of this server controller was operated on a lowcost computer (Raspberry Pi), which has a 3G connection for remote control and monitor functions from anywhere in the world. This study shows the potential of a low-cost automatic sensor network system for studying GHG fluxes on lakes in remote locations.
  •  
15.
  • Nguyen, Thanh, et al. (författare)
  • Technical note : Greenhouse gas flux studies
  • 2020
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 24:7, s. 3417-3430
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquatic ecosystems are major sources of greenhouse gases (GHGs). Robust measurements of natural GHG emissions are vital for evaluating regional to global carbon budgets and for assessing climate feedbacks of natural emissions to improve climate models. Diffusive and ebullitive (bubble) transport are two major pathways of gas release from surface waters. To capture the high temporal variability of these fluxes in a well-defined footprint, we designed and built an inexpensive device that includes an easily mobile diffusive flux chamber and a bubble counter all in one. In addition to automatically collecting gas samples for subsequent various analyses in the laboratory, this device also utilized a low-cost carbon dioxide (CO2) sensor (SenseAir, Sweden) and methane (CH4) sensor (Figaro, Japan) to measure GHG fluxes. Each of the devices was equipped with an XBee module to enable local radio communication (DigiMesh network) for time synchronization and data readout at a server controller station on the lakeshore. The software of this server controller was operated on a lowcost computer (Raspberry Pi), which has a 3G connection for remote control and monitor functions from anywhere in the world. This study shows the potential of a low-cost automatic sensor network system for studying GHG fluxes on lakes in remote locations.
  •  
16.
  • Thornton, Brett F., et al. (författare)
  • Climate-forced changes in available energy and methane bubbling from subarctic lakes
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:6, s. 1936-1942
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong correlations between seasonal energy input and methane (CH4) bubbling (ebullition) in northern lakes suggest that energy proxies might provide a constraint on the magnitude of future CH4 emissions. Ebullition is a major pathway for transporting anaerobically produced CH4 from lake sediments to the atmosphere and represents a large unquantified CH4 source. In high-latitude, postglacial lakes during the ice-free season, solar shortwave energy input can constrain CH4 productivity via control of sediment temperature. Utilizing long-term climatic predictors, we calculate CH4 ebullition from three subarctic lakes in northern Sweden over the period of 1916-2079. Using observed energy trends, the seasonal average lake CH4 ebullition is predicted to increase by 80% between the 1916-1926 decade and the 2040-2079 period. Present-day seasonal average methane ebullition is estimated to have already increased 24% since the 1916-1926 decade.
  •  
17.
  • Thornton, Brett F., et al. (författare)
  • Double-counting challenges the accuracy of high-latitude methane inventories
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:24, s. 12,569-12,577
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantification of the present and future contribution to atmospheric methane (CH4) from lakes, wetlands, fluvial systems, and, potentially, coastal waters remains an important unfinished task for balancing the global CH4 budget. Discriminating between these sources is crucial, especially across climate-sensitive Arctic and subarctic landscapes and waters. Yet basic underlying uncertainties remain, in such areas as total wetland area and definitions of wetlands, which can lead to conflation of wetlands and small ponds in regional studies. We discuss how in situ sampling choices, remote sensing limitations, and isotopic signature overlaps can lead to unintentional double-counting of CH4 emissions and proposethat this double-counting can explain a pan-Arctic bottom-up estimate from published sources, 59.7 Tg yr-1(range 36.9–89.4 Tg yr-1) greatly exceeding the most recent top-down inverse modeled estimate of thepan-Arctic CH4 budget (235 Tg yr-1).
  •  
18.
  • Wik, Martin, et al. (författare)
  • Biased sampling of methane release from northern lakes : A problem for extrapolation
  • 2016
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 43:3, s. 1256-1262
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane emissions from lakes are widely thought to be highly irregular and difficult to quantify with anything other than numerous distributed measurement stations and long-term sampling campaigns. In spite of this, a large majority of the study sites north of 50°N have been measured over surprisingly short time periods of only one to a few days. Using long-term data from three intensively studied small subarctic lakes, we recommend that measurements of diffusive methane flux and ebullition should be made over at least 11 and 39 days scattered throughout the ice-free season using depth-stratified sampling at 3 and 11 or more locations, respectively. We further show that low temporal and spatial resolutions are unlikely to cause overestimates. Therefore, we argue that most sites measured previously are likely underestimated in terms of emission potential. Avoiding these biases seen in much of the contemporary data is crucial to further constrain large-scale methane emissions from northern lakes and ponds.
  •  
19.
  • Wik, Martin, et al. (författare)
  • Bubbles trapped in arctic lake ice : Potential implications for methane emissions
  • 2011
  • Ingår i: Journal of Geophysical Research. - Washington, DC, USA : American Geophysical Union. - 0148-0227 .- 2156-2202. ; 116, s. G03044-
  • Tidskriftsartikel (refereegranskat)abstract
    • The amount of methane (CH(4)) emitted from northern lakes to the atmosphere is uncertain but is expected to increase as a result of arctic warming. A majority of CH4 is thought to be released through ebullition (bubbling), a pathway with extreme spatial variability that limits the accuracy of measurements. We assessed ebullition during early and late winter by quantifying bubbles trapped in the ice cover of two lakes in a landscape with degrading permafrost in arctic Sweden using random transect sampling and a digital image processing technique. Bubbles covered up to similar to 8% of the lake area and were largely dominated by point source emissions with spatial variabilities of up to 1056%. Bubble occurrence differed significantly between early and late season ice, between the two lakes and among different zones within each lake (p < 0.001). Using a common method, we calculated winter fluxes of up to 129 +/- 486 mg CH(4) m(-2) d(-1). These calculations are, on average, two times higher than estimates from North Siberian and Alaskan lakes and four times higher than emissions measured from the same lakes during summer. Therefore, the calculations are likely overestimates and point to the likelihood that estimating CH(4) fluxes from ice bubble distributions may be more difficult than believed. This study also shows that bubbles quantified using few transects will most likely be unsuitable in making large-scale flux estimates. At least 19 transects covering similar to 1% of the lake area were required to examine ebullition with high precision in our studied lakes.
  •  
20.
  • Wik, Martin, et al. (författare)
  • Climate-sensitive northern lakes and ponds are critical components of methane release
  • 2016
  • Ingår i: Nature Geoscience. - : NATURE PUBLISHING GROUP. - 1752-0894 .- 1752-0908. ; 9:2, s. 99-
  • Forskningsöversikt (refereegranskat)abstract
    • Lakes and ponds represent one of the largest natural sources of the greenhouse gas methane. By surface area, almost half of these waters are located in the boreal region and northwards. A synthesis of measurements of methane emissions from 733 lakes and ponds north of similar to 50 degrees N, combined with new inventories of inland waters, reveals that emissions from these high latitudes amount to around 16.5 Tg CH4 yr(-1) (12.4 Tg CH4-C yr(-1)). This estimate - from lakes and ponds alone - is equivalent to roughly two-thirds of the inverse model calculation of all natural methane sources in the region. Thermokarst water bodies have received attention for their high emission rates, but we find that post-glacial lakes are a larger regional source due to their larger areal extent. Water body depth, sediment type and ecoclimatic region are also important in explaining variation in methane fluxes. Depending on whether warming and permafrost thaw cause expansion or contraction of lake and pond areal coverage, we estimate that annual water body emissions will increase by 20-54% before the end of the century if ice-free seasons are extended by 20 days. We conclude that lakes and ponds are a dominant methane source at high northern latitudes.
  •  
21.
  • Wik, Martin, 1982-, et al. (författare)
  • Climate-sensitive northern lakes and ponds are critical components of methane release
  • 2016
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 9, s. 99-105
  • Forskningsöversikt (refereegranskat)abstract
    • Lakes and ponds represent one of the largest natural sources of the greenhouse gas methane. By surface area, almost half of these waters are located in the boreal region and northwards. A synthesis of measurements of methane emissions from 733 lakes and ponds north of ~50° N, combined with new inventories of inland waters, reveals that emissions from these high latitudes amount to around 16.5 Tg CH4 yr−1 (12.4 Tg CH4-C yr−1). This estimate — from lakes and ponds alone — is equivalent to roughly two-thirds of the inverse model calculation of all natural methane sources in the region. Thermokarst water bodies have received attention for their high emission rates, but we find that post-glacial lakes are a larger regional source due to their larger areal extent. Water body depth, sediment type and ecoclimatic region are also important in explaining variation in methane fluxes. Depending on whether warming and permafrost thaw cause expansion or contraction of lake and pond areal coverage, we estimate that annual water body emissions will increase by 20–54% before the end of the century if ice-free seasons are extended by 20 days. We conclude that lakes and ponds are a dominant methane source at high northern latitudes.
  •  
22.
  • Wik, Martin, 1982- (författare)
  • Emission of methane from northern lakes and ponds
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Northern lakes and ponds are abundant and emit large amounts of the potent climate forcer methane to the atmosphere at rates prone to change with amplified Arctic warming. In spite of being important, fluxes from surface waters are not well understood. Long-term measurements are lacking and the dominant and irregular transport mode ebullition (bubbling) is rarely quantified, which complicate the inclusion of lakes and ponds in the global methane budget. This thesis focuses on variations in emissions on both local and regional scales. A synthesis of methane fluxes from almost all studied sites constrains uncertainties and demonstrates that northern lakes and ponds are a dominant source at high latitudes. Per unit area variations in flux magnitudes among different types of water bodies are mainly linked to water depth and type of sediment. When extrapolated, total area is key and thus post-glacial lakes dominate emissions over water bodies formed by peat degradation or thermokarst processes. Further, consistent multiyear measurements in three post-glacial lakes in Stordalen, northern Sweden, reveal that seasonal ebullition, primarily driven by fermentation of acetate, can be predicted by easily measured parameters such as temperature and heat energy input over the ice-free season. Assuming that most water bodies respond similarly to warming, this thesis also suggests that northern lakes and ponds will release substantially more methane before the end of the century, primarily as a result of longer ice-free seasons. Improved uncertainty reductions of both current and future estimates rely on increased knowledge of landscape-level processes related to changes in aquatic systems and organic loading with permafrost thaw, as well as more high-quality measurements, seldom seen in contemporary data. Sampling distributed over entire ice-free seasons and across different depth zones is crucial for accurately quantifying methane emissions from northern lakes and ponds.
  •  
23.
  • Wik, Martin, et al. (författare)
  • Energy input is primary controller of methane bubbling in subarctic lakes
  • 2014
  • Ingår i: Geophysical Research Letters. - : Wiley-Blackwell. - 0094-8276 .- 1944-8007. ; 41:2, s. 555-560
  • Tidskriftsartikel (refereegranskat)abstract
    • Emission of methane (CH4) from surface waters is often dominated by ebullition (bubbling), a transport mode with high-spatiotemporal variability. Based on new and extensive CH4 ebullition data, we demonstrate striking correlations (r(2) between 0.92 and 0.997) when comparing seasonal bubble CH4 flux from three shallow subarctic lakes to four readily measurable proxies of incoming energy flux and daily flux magnitudes to surface sediment temperature (r(2) between 0.86 and 0.94). Our results after continuous multiyear sampling suggest that CH4 ebullition is a predictable process, and that heat flux into the lakes is the dominant driver of gas production and release. Future changes in the energy received by lakes and ponds due to shorter ice-covered seasons will predictably alter the ebullitive CH4 flux from freshwater systems across northern landscapes. This finding is critical for our understanding of the dynamics of radiatively important trace gas sources and associated climate feedback.
  •  
24.
  • Wik, Martin, et al. (författare)
  • Large isotopic variations and similarities in methane ebullition from northern lakes
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Lakes are abundant in northern, high latitude landscapes and considered a substantial source of atmospheric methane (CH4). In spite of this, little is known about how CH4 release mechanisms relate to underlying organic sources and biogenic production pathways in different types of water bodies. Here, we present a substantial, multiyear dataset of the stable isotopes of CH4 ebullition from three interconnected, subarctic post-glacial lakes. The δ13C-CH4 and δD-CH4 vary from -78.4 to -53.1‰ and from -369.8 to -218.8‰, respectively. Overall, these observations suggest predominantly acetoclastic methanogenesis in the shallow zones, possibly fueled by in-situ plant production, and a shift towards a mix with hydrogenotrophy at depth. The bubbles’ δ13C-CH4 are similar to most of those reported from other northern natural systems, but we found differences in δD-CH4, possibly due to evaporation-driven fractionation over summer. Stable isotopes provide valuable information about underlying organic sources and production pathways, however, due to large overlaps they may not be effective in reducing uncertainties in emissions potentials among different water body types, and in general between lakes and wetlands.
  •  
25.
  • Wik, Martin, et al. (författare)
  • Multiyear measurements of ebullitive methane flux from three subarctic lakes
  • 2013
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 118:3, s. 1307-1321
  • Tidskriftsartikel (refereegranskat)abstract
    • Ebullition (bubbling) from small lakes and ponds at high latitudes is an important yet unconstrained source of atmospheric methane (CH4). Small water bodies are most abundant in permanently frozen peatlands, and it is speculated that their emissions will increase as the permafrost thaws. We made 6806 measurements of CH4 ebullition during four consecutive summers using a total of 40 bubble traps that were systematically distributed across the depth zones of three lakes in a sporadic permafrost landscape in northernmost Sweden. We identified significant spatial and temporal variations in ebullition and observed a large spread in the bubbles' CH4 concentration, ranging from 0.04% to 98.6%. Ebullition followed lake temperatures, and releases were significantly larger during periods with decreasing atmospheric pressure. Although shallow zone ebullition dominated the seasonal bubble CH4 flux, we found a shift in the depth dependency towards higher fluxes from intermediate and deep zones in early fall. The average daily flux of 13.4mg CH4 m(-2) was lower than those measured in most other high-latitude lakes. Locally, however, our study lakes are a substantial CH4 source; we estimate that 350kg of CH4 is released via ebullition during summer (June-September), which is approximately 40% of total whole year emissions from the nearby peatland. In order to capture the large variability and to accurately scale lake CH4 ebullition temporally and spatially, frequent measurements over long time periods are critical.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy