SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wimberger Sandra 1987) "

Sökning: WFRF:(Wimberger Sandra 1987)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bestas, Burcu, et al. (författare)
  • A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo
  • 2023
  • Ingår i: NATURE COMMUNICATIONS. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcus pyogenes Cas9 (SpCas9) and derived enzymes are widely used as genome editors, but their promiscuous nuclease activity often induces undesired mutations and chromosomal rearrangements. Several strategies for mapping off-target effects have emerged, but they suffer from limited sensitivity. To increase the detection sensitivity, we develop an off-target assessment workflow that uses Duplex Sequencing. The strategy increases sensitivity by one order of magnitude, identifying previously unknown SpCas9's off-target mutations in the humanized PCSK9 mouse model. To reduce off-target risks, we perform a bioinformatic search and identify a high-fidelity Cas9 variant of the II-B subfamily from Parasutterella secunda (PsCas9). PsCas9 shows improved specificity as compared to SpCas9 across multiple tested sites, both in vitro and in vivo, including the PCSK9 site. In the future, while PsCas9 will offer an alternative to SpCas9 for research and clinical use, the Duplex Sequencing workflow will enable a more sensitive assessment of Cas9 editing outcomes. SpCas9 unintended editing is a major concern. Here the authors report an off-target method using Duplex Sequencing with increased sensitivity for Cas9 mutation detection; they also identify a Cas9 variant of the II-B subfamily with intrinsic high fidelity (PsCas9) and see improved specificity.
  •  
2.
  • Li, S. Y., et al. (författare)
  • Universal toxin-based selection for precise genome engineering in human cells
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Prokaryotic restriction enzymes, recombinases and Cas proteins are powerful DNA engineering and genome editing tools. However, in many primary cell types, the efficiency of genome editing remains low, impeding the development of gene- and cell-based therapeutic applications. A safe strategy for robust and efficient enrichment of precisely genetically engineered cells is urgently required. Here, we screen for mutations in the receptor for Diphtheria Toxin (DT) which protect human cells from DT. Selection for cells with an edited DT receptor variant enriches for simultaneously introduced, precisely targeted gene modifications at a second independent locus, such as nucleotide substitutions and DNA insertions. Our method enables the rapid generation of a homogenous cell population with bi-allelic integration of a DNA cassette at the selection locus, without clonal isolation. Toxin-based selection works in both cancer-transformed and non-transformed cells, including human induced pluripotent stem cells and human primary T-lymphocytes, as well as it is applicable also in vivo, in mice with humanized liver. This work represents a flexible, precise, and efficient selection strategy to engineer cells using CRISPR-Cas and base editing systems. Genome engineering in cell lines or human stem cells often has poor efficiency, limiting the development of research and therapeutic applications. Here, the authors use a toxin-based selection system for precise bi-allelic engineering in cells and in vivo.
  •  
3.
  • Peterka, M., et al. (författare)
  • Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Prime editing recently emerged as a next-generation approach for precise genome editing. Here we exploit DNA double-strand break (DSB) repair to develop two strategies that install precise genomic insertions using an SpCas9 nuclease-based prime editor (PEn). We first demonstrate that PEn coupled to a regular prime editing guide RNA (pegRNA) efficiently promotes short genomic insertions through a homology-dependent DSB repair mechanism. While PEn editing leads to increased levels of by-products, it can rescue pegRNAs that perform poorly with a nickase-based prime editor. We also present a small molecule approach that yields increased product purity of PEn editing. Next, we develop a homology-independent PEn editing strategy, which installs genomic insertions at DSBs through the non-homologous end joining pathway (NHEJ). Lastly, we show that PEn-mediated insertions at DSBs prevent Cas9-induced large chromosomal deletions and provide evidence that continuous Cas9-mediated cutting is one of the mechanisms by which Cas9-induced large deletions arise. Altogether, this work expands the current prime editing toolbox by leveraging distinct DNA repair mechanisms including NHEJ, which represents the primary pathway of DSB repair in mammalian cells. Prime editing is a next-generation approach for precision genome engineering. Here the authors design a nuclease-based prime editor that leverages DNA repair pathways for targeted genomic insertions.
  •  
4.
  • Wimberger, Sandra, 1987 (författare)
  • Improving integration efficiency and precision of CRISPR/Cas9-mediated genome editing
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The clustered regularly interspaced short palindromic repeats (CRISPR) – CRISPR-associated protein 9 (Cas9) system has revolutionized the field of genome engineering, providing a cost-effective and fast tool for targeted gene modifications. Endogenous repair pathways, including error-prone non-homologous end joining and alternative end joining, or precise homology-directed repair (HDR), mend Cas9-induced DNA double-strand breaks. End joining repair can result in imprecise DNA insertions and deletions that may be used to disrupt gene function. At the same time, HDR enables accurate genomic alterations, such as gene knock-ins, by harnessing an exogenous DNA repair template carrying the desired genomic modification. Despite the potential benefits of the CRISPR-Cas9 system, two significant challenges can limit its application. As cells naturally favor end joining repair over HDR, the efficiency of precise genome engineering is often low. Furthermore, end joining repair pathways can cause deleterious on- and off-target effects. To gain a deeper understanding of the interplay between CRISPR/Cas9 and eukaryotic DNA damage repair pathways and to enhance the efficiency of precise modification and fidelity of CRISPR-centric genome editing, we devised several strategies: in Paper I, we developed a method to elucidate DNA repair mechanisms at Cas9-induced double strand breaks and identified a potent combination of compounds inhibiting the two major HDR-competing pathways. In Paper II, we advanced a Cas9 nuclease-based prime editing strategy, enabling the precise installation of small insertions at the cleavage site through a homology-independent mechanism. In Paper III, we established a co-selection strategy utilizing an endogenous selection marker to enrich edited cells with desired modifications. Lastly, in Paper IV, we discovered a natural, high-fidelity Cas9-orthologue that generates single-stranded DNA overhangs, facilitating non-homologous end joining- and HDR-mediated insertions at the target locus. These studies pave the way for drastically improved cell line generation protocols and potential applications for therapeutic gene editing.
  •  
5.
  • Wimberger, Sandra, 1987, et al. (författare)
  • Simultaneous inhibition of DNA-PK and Pol ϴ improves integration efficiency and precision of genome editing
  • 2023
  • Ingår i: Nature Communications. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome editing, specifically CRISPR/Cas9 technology, has revolutionized biomedical research and offers potential cures for genetic diseases. Despite rapid progress, low efficiency of targeted DNA integration and generation of unintended mutations represent major limitations for genome editing applications caused by the interplay with DNA double-strand break repair pathways. To address this, we conduct a large-scale compound library screen to identify targets for enhancing targeted genome insertions. Our study reveals DNA-dependent protein kinase (DNA-PK) as the most effective target to improve CRISPR/Cas9-mediated insertions, confirming previous findings. We extensively characterize AZD7648, a selective DNA-PK inhibitor, and find it to significantly enhance precise gene editing. We further improve integration efficiency and precision by inhibiting DNA polymerase theta (Pol ϴ). The combined treatment, named 2iHDR, boosts templated insertions to 80% efficiency with minimal unintended insertions and deletions. Notably, 2iHDR also reduces off-target effects of Cas9, greatly enhancing the fidelity and performance of CRISPR/Cas9 gene editing. Low efficiency of target DNA integration remains a challenge in genome engineering. Here the authors perform large-scale compound library and genetic screens to identify targets that enhance gene editing: they see that combined DNA-PK and Pol ϴ inhibition with potent compounds increases editing efficiency and precision.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy