SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Witasse Olivier) "

Sökning: WFRF:(Witasse Olivier)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blanc, Michel, et al. (författare)
  • Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems : A Horizon 2061 Perspective
  • 2021
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 217:1
  • Forskningsöversikt (refereegranskat)abstract
    • The comparative study of planetary systems is a unique source of new scientific insight: following the six “key science questions” of the “Planetary Exploration, Horizon 2061” long-term foresight exercise, it can reveal to us the diversity of their objects (Question 1) and of their architectures (Question 2), help us better understand their origins (Question 3) and how they work (Question 4), find and characterize habitable worlds (Question 5), and ultimately, search for alien life (Question 6). But a huge “knowledge gap” exists which limits the applicability of this approach in the solar system itself: two of its secondary planetary systems, the ice giant systems of Uranus and Neptune, remain poorly explored. Starting from an analysis of our current limited knowledge of solar system ice giants and their systems in the light of these six key science questions, we show that a long-term plan for the space exploration of ice giants and their systems will greatly contribute to answer these questions. To do so, we identify the key measurements needed to address each of these questions, the destinations to choose (Uranus, Neptune, Triton or a subset of them), the combinations of space platform(s) and the types of flight sequences needed. We then examine the different launch windows available until 2061, using a Jupiter fly-by, to send a mission to Uranus or Neptune, and find that: (1) an optimized choice of platforms and flight sequences makes it possible to address a broad range of the key science questions with one mission at one of the planets. Combining an atmospheric entry probe with an orbiter tour starting on a high-inclination, low periapse orbit, followed by a sequence of lower inclination orbits (or the other way around) appears to be an optimal choice. (2) a combination of two missions to each of the ice giant systems, to be flown in parallel or in sequence, will address five out of the six key questions and establish the prerequisites to address the sixth one: searching for life at one of the most promising Ice Giant moons. (3) The 2032 Jupiter fly-by window, which offers a unique opportunity to implement this plan, should be considered in priority; if this window cannot be met, using the 2036 Jupiter fly-by window to send a mission to Uranus first, and then the 2045 window for a mission to Neptune, will allow one to achieve the same objectives; as a back-up option, one should consider an orbiter + probe mission to one of the planets and a close fly-by of the other planet to deliver a probe into its atmosphere, using the opportunity of a future mission on its way to Kuiper Belt Objects or the interstellar medium; (4) based on the examination of the habitability of the different moons by the first two missions, a third one can be properly designed to search for life at the most promising moon, likely Triton, or one of the active moons of Uranus. Thus, by 2061 the first two missions of this plan can be implemented and a third mission focusing on the search for life can be designed. Given that such a plan may be out of reach of a single national agency, international collaboration is the most promising way to implement it.
  •  
2.
  • Fletcher, Leigh N., et al. (författare)
  • Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer
  • 2023
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 219:7
  • Forskningsöversikt (refereegranskat)abstract
    • ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 & mu;m), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet.
  •  
3.
  • Lester, Mark, et al. (författare)
  • The Impact of Energetic Particles on the Martian Ionosphere During a Full Solar Cycle of Radar Observations: Radar Blackouts
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 127:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first long-term characterization of ionization layers in the lower ionosphere of Mars (below ∼90 km), a region inaccessible to orbital in-situ observations, based on an analysis of radar echo blackouts observed on Mars Express and the Mars Reconnaissance Orbiter from 2006 to 2017. A blackout occurs when the expected surface reflection is partly or totally attenuated for portions of an observation. Enhanced ionization at altitudes of 60–90 km, below the main ionospheric electron density peak, leads to increased absorption of the radar signal, resulting in the blackouts. We find that (a) MARSIS, operating at frequencies between 1.8 and 5 MHz, suffered more blackouts than SHARAD, which has a higher carrier frequency (20 MHz), (b) there is a clear correlation of blackout occurrence with solar cycle, (c) there is no apparent relationship between blackout occurrence and crustal magnetic fields, and (d) blackouts occur during both nightside and dayside observations, although the peak occurrence is deep on the nightside. Analysis of Mars Atmosphere and Volatile EvolutioN Solar Energetic Particle electron counts between 20 and 200 keV demonstrates that these electrons are likely responsible for attenuating the radar signals. We investigate the minimum SEP electron fluxes required to ionize the lower atmosphere and produce measurable attenuation. When both radars experience a blackout, the SEP electron fluxes are at their highest. Based on several case studies, we find that the average SEP spectrum responsible for a blackout is particularly enhanced at its higher energy end, that is, above 70 keV.
  •  
4.
  • Sanchez-Cano, Beatriz, et al. (författare)
  • Mars' Ionospheric Interaction With Comet C/2013 A1 Siding Spring's Coma at Their Closest Approach as Seen by Mars Express
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:1
  • Tidskriftsartikel (refereegranskat)abstract
    • On 19 October 2014, Mars experienced a close encounter with Comet C/2013 A1 Siding Spring. Using data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) on board Mars Express (MEX), we assess the interaction of the Martian ionosphere with the comet's coma and possibly magnetic tail during the orbit of their closest approach. The topside ionospheric electron density profile is evaluated from the altitude of the peak density of the ionosphere up to the MEX altitude. We find complex and rapid variability in the ionospheric profile along the MEX orbit, not seen even after the impact of a large coronal mass ejection. Before closest approach, large electron density reductions predominate, which could be caused either by comet water damping or comet magnetic field interactions. After closest approach, a substantial electron density rise predominates. Moreover, several extra topside layers are visible along the whole orbit at different altitudes, which could be related to different processes as we discuss.
  •  
5.
  • Sanchez-Cano, Beatriz, et al. (författare)
  • Origin of the Extended Mars Radar Blackout of September 2017
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 124:6, s. 4556-4568
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard Mars Express, which operates between 0.1 and 5.5 MHz, suffered from a complete blackout for 10 days in September 2017 when observing on the nightside (a rare occurrence). Moreover, the Shallow Radar (SHARAD) onboard the Mars Reconnaissance Orbiter, which operates at 20 MHz, also suffered a blackout for three days when operating on both dayside and nightside. We propose that these blackouts are caused by solar energetic particles of few tens of keV and above associated with an extreme space weather event between 10 and 22 September 2017, as recorded by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Numerical simulations of energetic electron precipitation predict that a lower O-2(+) nighttime ionospheric layer of magnitude similar to 10(10) m(-3) peaking at similar to 90-km altitude is produced. Consequently, such a layer would absorb radar signals at high frequencies and explain the blackouts. The peak absorption level is found to be at 70-km altitude. Plain Language Summary Several instrument operations, as well as communication systems with rovers at the surface, depend on radio signals that propagate throughout the atmosphere of Mars. This is the case also for two radars that are currently working in Mars' orbit, sounding the ionosphere, surface, and subsurface of the planet. In mid-September 2017, a powerful solar storm hit Mars, producing a large amount of energetic particle precipitation over a 10-day period. We have found that high-energy electrons ionized the atmosphere of Mars, creating a dense layer of ions and electrons at similar to 90 km on the Martian nightside. This layer attenuated radar signals continuously for 10 days, stopping the radars to receive any signal from the planetary surface. In this work, we assess the properties of this layer in order to understand the implications of this kind of phenomenon for radar performance and communications.
  •  
6.
  • Sánchez-Cano, Beatriz, et al. (författare)
  • Solar Energetic Particle Events Detected in the Housekeeping Data of the European Space Agency's Spacecraft Flotilla in the Solar System
  • 2023
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 21:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the growing importance of planetary Space Weather forecasting and radiation protection for science and robotic exploration and the need for accurate Space Weather monitoring and predictions, only a limited number of spacecraft have dedicated instrumentation for this purpose. However, every spacecraft (planetary or astronomical) has hundreds of housekeeping sensors distributed across the spacecraft, some of which can be useful to detect radiation hazards produced by solar particle events. In particular, energetic particles that impact detectors and subsystems on a spacecraft can be identified by certain housekeeping sensors, such as the Error Detection and Correction (EDAC) memory counters, and their effects can be assessed. These counters typically have a sudden large increase in a short time in their error counts that generally match the arrival of energetic particles to the spacecraft. We investigate these engineering datasets for scientific purposes and perform a feasibility study of solar energetic particle event detections using EDAC counters from seven European Space Agency Solar System missions: Venus Express, Mars Express, ExoMars-Trace Gas Orbiter, Rosetta, BepiColombo, Solar Orbiter, and Gaia. Six cases studies, in which the same event was observed by different missions at different locations in the inner Solar System are analyzed. The results of this study show how engineering sensors, for example, EDAC counters, can be used to infer information about the solar particle environment at each spacecraft location. Therefore, we demonstrate the potential of the various EDAC to provide a network of solar particle detections at locations where no scientific observations of this kind are available.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy