SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Woudt P. A.) "

Sökning: WFRF:(Woudt P. A.)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Veres, P., et al. (författare)
  • Observation of inverse Compton emission from a long gamma-ray burst
  • 2019
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 575:7783, s. 459-
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectron volt-to-mega electronvoltband, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission(1,2). Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands(1-6). The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock(7-9). Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C(10,11). Here we report multifrequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 x 10(-6) to 10(12) electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.
  •  
2.
  • de Blok, W.J.G., et al. (författare)
  • an overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT
  • 2016
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm−2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities.
  •  
3.
  • Kupfer, T., et al. (författare)
  • The OmegaWhite Survey for Short-period Variable Stars. V. Discovery of an Ultracompact Hot Subdwarf Binary with a Compact Companion in a 44-minute Orbit
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 851:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of the ultracompact hot subdwarf (sdOB) binary OW J074106.0-294811.0 with an orbital period of P-orb = 44.66279 +/- 1.16 x 10(-4) minutes, making it the most compact hot subdwarf binary known. Spectroscopic observations using the VLT, Gemini and Keck telescopes revealed a He-sdOB primary with an intermediate helium abundance, T-eff = 39 400 +/- 500 K and log g = 5.74 +/- 0.09. High signal-to-noise ratio light curves show strong ellipsoidal modulation resulting in a derived sdOB mass M-sdOB= 0.23 +/- 0.12 M-circle dot with a WD companion (M-WD = 0.72 +/- 0.17 M-circle dot). The mass ratio was found to be q = M-sdOB/M-WD = 0.32 +/- 0.10. The derived mass for the He-sdOB is inconsistent with the canonical mass for hot subdwarfs of approximate to 0.47 M-circle dot. To put constraints on the structure and evolutionary history of the sdOB star we compared the derived T-eff, log g, and sdOB mass to evolutionary tracks of helium stars and helium white dwarfs calculated with Modules for Experiments in Stellar Astrophysics (MESA). We find that the best-fitting model is a helium white dwarf with a mass of 0.320 M-circle dot, which left the common envelope approximate to 1.1 Myr ago, which is consistent with the observations. As a helium white dwarf with a massive white dwarf companion, the object will reach contact in 17.6 Myr at an orbital period of 5 minutes. Depending on the spin-orbit synchronization timescale the object will either merge to form an R CrB star or end up as a stably accreting AM CVn-type system with a helium white dwarf donor.
  •  
4.
  • Russell, T. D., et al. (författare)
  • Disk-Jet Coupling in the 2017/2018 Outburst of the Galactic Black Hole Candidate X-Ray Binary MAXI J1535-571
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 883:2
  • Tidskriftsartikel (refereegranskat)abstract
    • MAXI J1535-571 is a Galactic black hole candidate X-ray binary that was discovered going into outburst in 2017 September. In this paper, we present comprehensive radio monitoring of this system using the Australia Telescope Compact Array, as well as the MeerKAT radio observatory, showing the evolution of the radio jet during its outburst. Our radio observations show the early rise and subsequent quenching of the compact jet as the outburst brightened and then evolved toward the soft state. We constrain the compact jet quenching factor to be more than 3.5 orders of magnitude. We also detected and tracked (for 303 days) a discrete, relativistically moving jet knot that was launched from the system. From the motion of the apparently superluminal knot, we constrain the jet inclination (at the time of ejection) and speed to = 0.69 c, respectively. Extrapolating its motion back in time, our results suggest that the jet knot was ejected close in time to the transition from the hard intermediate state to soft intermediate state. The launching event also occurred contemporaneously with a short increase in X-ray count rate, a rapid drop in the strength of the X-ray variability, and a change in the type-C quasi-periodic oscillation (QPO) frequency that occurs >2.5 days before the first appearance of a possible type-B QPO.
  •  
5.
  • Ahrens, Maryon, et al. (författare)
  • Multi-messenger Observations of a Binary Neutron Star Merger
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 848:2
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of similar to 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40(-8)(+8) Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M-circle dot. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at similar to 40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over similar to 10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position similar to 9 and similar to 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
  •  
6.
  • Giroletti, M., et al. (författare)
  • Filming the evolution of symbiotic novae with VLBI: The 2021 explosion of RS Oph
  • 2023
  • Ingår i: Proceedings of Science. - 1824-8039. ; 428
  • Konferensbidrag (refereegranskat)abstract
    • Fifteen years after its previous outburst, the symbiotic recurrent nova RS Oph exploded again on 2021 Aug 8th, its first outburst during the Fermi era. In symbiotic novae, the material ejected from the surface of the white dwarf (WD) after the thermonuclear runaway drives a strong shock through the dense circumstellar gas produced by the red giant (RG) wind. This nova is a perfect real-Time laboratory for studying physical processes as diverse as accretion, thermonuclear explosions, shock dynamics and particle acceleration; in many ways it is like a supernova remnant on fast forward. The experience of its previous outburst and that of 2010 for V407 (the symbiotic nova that has been extensively observed during the Fermi era), indicates that a large sensitivity and a broad range of baseline lengths are necessary to follow its evolution over a period of several weeks. This would provide unique constraints on major outstanding problems, including the emission mechanisms, the physical processes at work, the presence and location of shock acceleration, the geometry of the system, and the density of the RG wind. We present preliminary results from the EVN+e-MERLIN observations carried out on weeks/months time scales after the August explosion.
  •  
7.
  • Munari, U., et al. (författare)
  • Radio interferometric imaging of RS Oph bipolar ejecta for the 2021 nova outburst
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • The recurrent nova and symbiotic binary RS Oph erupted again in August 2021 for its eighth known outburst. We observed RS Oph 34 days after the outburst at 5 GHz with the European VLBI Network (EVN). The radio image is elongated over the east-west direction for a total extension of about 90 mas (or about 240 AU at the Gaia DR3 distance d = 2.68-0.15+0.17 kpc), and shows a bright and compact central component coincident with the Gaia astrometric position, and two lobes east and west of it, expanding perpendicular to the orbital plane. By comparing with the evolution of emission-line profiles on optical spectra, we found the leading edge of the lobes to be expanding at ~7550 km s-1, and i = 54 as the orbital inclination of the binary. The 2021 radio structure is remarkably similar to that observed following the 2006 eruption. The obscuring role of the density enhancement on the orbital plane (DEOP) is discussed in connection to the time-dependent visibility of the receding lobe in the background to the DEOP, and the origin of the triple-peaked profiles is traced to the ring structure formed by the nova ejecta impacting the DEOP.
  •  
8.
  • Sooknunan, K., et al. (författare)
  • Classification of multiwavelength transients with machine learning
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 502:1, s. 206-224
  • Tidskriftsartikel (refereegranskat)abstract
    • With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; and (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the 11 classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78 per cent. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97 per cent, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19 per cent.
  •  
9.
  • Stein, Robert, et al. (författare)
  • A tidal disruption event coincident with a high-energy neutrino
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; :5, s. 510-518
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux. The tidal disruption event AT2019dsg is probably associated with a high-energy neutrino, suggesting that such events can contribute to the cosmic neutrino flux. The electromagnetic emission is explained in terms of a central engine, a photosphere and an extended synchrotron-emitting outflow.
  •  
10.
  •  
11.
  • Smirnov, O. M., et al. (författare)
  • The RATT PARROT : serendipitous discovery of a peculiarly scintillating pulsar in MeerKAT imaging observations of the Great Saturn – Jupiter Conjunction of 2020. I. Dynamic imaging and data analysis
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 528:4, s. 6517-6537
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a radiopolarimetric observation of the Saturn–Jupiter Great Conjunction of 2020 using the MeerKAT L-band system, initially carried out for science verification purposes, which yielded a serendipitous discovery of a pulsar. The radiation belts of Jupiter are very bright and time variable: coupled with the sensitivity of MeerKAT, this necessitated development of dynamic imaging techniques, reported on in this work. We present a deep radio ‘movie’ revealing Jupiter’s rotating magnetosphere, a radio detection of Callisto, and numerous background radio galaxies. We also detect a bright radio transient in close vicinity to Saturn, lasting approximately 45 min. Follow-up deep imaging observations confirmed this as a faint compact variable radio source, and yielded detections of pulsed emission by the commensal MeerTRAP search engine, establishing the object’s nature as a radio emitting neutron star, designated PSR J2009−2026. A further observation combining deep imaging with the PTUSE pulsar backend measured detailed dynamic spectra for the object. While qualitatively consistent with scintillation, the magnitude of the magnification events and the characteristic time–scales are odd. We are tentatively designating this object a pulsar with anomalous refraction recurring on odd time-scales (PARROT). As part of this investigation, we present a pipeline for detection of variable sources in imaging data, with dynamic spectra and light curves as the products, and compare dynamic spectra obtained from visibility data with those yielded by PTUSE. We discuss MeerKAT’s capabilities and prospects for detecting more of such transients and variables.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy