SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wu Muqiu) "

Sökning: WFRF:(Wu Muqiu)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • An, Rong, et al. (författare)
  • Atomic force microscopy probing interactions and microstructures of ionic liquids at solid surfaces
  • 2022
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; :14, s. 11098-11128
  • Forskningsöversikt (refereegranskat)abstract
    • Ionic liquids (ILs) are room temperature molten salts that possess preeminent physicochemical properties and have shown great potential in many applications. However, the use of ILs in surface-dependent processes, e.g. energy storage, is hindered by the lack of a systematic understanding of the IL interfacial microstructure. ILs on the solid surface display rich ordering, arising from coulombic, van der Waals, solvophobic interactions, etc., all giving near-surface ILs distinct microstructures. Therefore, it is highly important to clarify the interactions of ILs with solid surfaces at the nanoscale to understand the microstructure and mechanism, providing quantitative structure–property relationships. Atomic force microscopy (AFM) opens a surface-sensitive way to probe the interaction force of ILs with solid surfaces in the layers from sub-nanometers to micrometers. Herein, this review showcases the recent progress of AFM in probing interactions and microstructures of ILs at solid interfaces, and the influence of IL characteristics, surface properties and external stimuli is thereafter discussed. Finally, a summary and perspectives are established, in which, the necessities of the quantification of IL–solid interactions at the molecular level, the development of in situ techniques closely coupled with AFM for probing IL–solid interfaces, and the combination of experiments and simulations are argued.
  •  
2.
  • An, Rong, et al. (författare)
  • Ionic liquids on uncharged and charged surfaces: In situ microstructures and nanofriction
  • 2022
  • Ingår i: Friction. - : Springer. - 2223-7690 .- 2223-7704. ; 10:11, s. 1893-1912
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ changes in the nanofriction and microstructures of ionic liquids (ILs) on uncharged and charged surfaces have been investigated using colloid probe atomic force microscopy (AFM) and molecular dynamic (MD) simulations. Two representative ILs, [BMIM][BF4] (BB) and [BMIM][PF6] (BP), containing a common cation, were selected for this study. The torsional resonance frequency was captured simultaneously when the nanoscale friction force was measured at a specified normal load; and it was regarded as a measure of the contact stiffness, reflecting in situ changes in the IL microstructures. A higher nanoscale friction force was observed on uncharged mica and highly oriented pyrolytic graphite (HOPG) surfaces when the normal load increased; additionally, a higher torsional resonance frequency was detected, revealing a higher contact stiffness and a more ordered IL layer. The nanofriction of ILs increased at charged HOPG surfaces as the bias voltage varied from 0 to 8 V or from 0 to —8 V. The simultaneously recorded torsional resonance frequency in the ILs increased with the positive or negative bias voltage, implying a stiffer IL layer and possibly more ordered ILs under these conditions. MD simulation reveals that the [BMIM]+ imidazolium ring lies parallel to the uncharged surfaces preferentially, resulting in a compact and ordered IL layer. This parallel “sleeping” structure is more pronounced with the surface charging of either sign, indicating more ordered ILs, thereby substantiating the AFM-detected stiffer IL layering on the charged surfaces. Our in situ observations of the changes in nanofriction and microstructures near the uncharged and charged surfaces may facilitate the development of IL-based applications, such as lubrication and electrochemical energy storage devices, including supercapacitors and batteries.
  •  
3.
  • An, Rong, et al. (författare)
  • On the Ionic Liquid Film ‘Pinned’ by Core-Shell Structured Fe3O4@Carbon Nanoparticles and Their Tribological Properties
  • 2019
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 21:48, s. 26387-26398
  • Tidskriftsartikel (refereegranskat)abstract
    • A strongly ‘pinned’ ionic liquid (IL, [BMIM][PF6]) film onto silicon (Si) surface via carbon capsuled Fe3O4 core-shell (Fe3O4@C) nanoparticles is achieved, revealing excellent friction-reducing ability at a high load. The adhesion force is measured as ~ 198 nN at the Fe3O4@C-Si interface by Fe3O4@C colloidal AFM tip, which is stronger than that at both Fe3O4@C-Fe3O4@C (~ 60 nN) and IL-Si (~ 10 nN) interfaces, indicating a strong ‘normal pin-force’ towards the Si substrate. The resulting strengthened force enables the formation of lateral IL networks via the dipole-dipole attractions among Fe3O4 cores. The observed blue shift of the characteristic band related to the IL anion in ATR-FTIR spectra confirmed the enhanced interaction. The N-Si, P-O chemical bonds formed as a result of the IL interactions with the Si substrate confirmed by XPS spectroscopy suggested that the IL lay on the Si plane. This orientation is favorable for Fe3O4@C nanoparticles to exert ‘normal pin-force’ and press the IL film strongly onto surfaces. The IL ios/clusters are thus anchored by these Fe3O4@C ‘pins’ onto the substrate to form a dense film, resulting in a smaller interaction size parameter, which is responsible for the reduced friction coefficient μ.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy