SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yaqub Maqsood) "

Sökning: WFRF:(Yaqub Maqsood)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Altomare, Daniele, et al. (författare)
  • Applying the ATN scheme in a memory clinic population : The ABIDE project
  • 2019
  • Ingår i: Neurology. - 1526-632X. ; 93:17, s. 1635-1646
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To apply the ATN scheme to memory clinic patients, to assess whether it discriminates patient populations with specific features. METHODS: We included 305 memory clinic patients (33% subjective cognitive decline [SCD]: 60 ± 9 years, 61% M; 19% mild cognitive impairment [MCI]: 68 ± 9 years, 68% M; 48% dementia: 66 ± 10 years, 58% M) classified for positivity (±) of amyloid (A) ([18F]Florbetaben PET), tau (T) (CSF p-tau), and neurodegeneration (N) (medial temporal lobe atrophy). We assessed ATN profiles' demographic, clinical, and cognitive features at baseline, and cognitive decline over time. RESULTS: The proportion of A+T+N+ patients increased with syndrome severity (from 1% in SCD to 14% in MCI and 35% in dementia), while the opposite was true for A-T-N- (from 48% to 19% and 6%). Compared to A-T-N-, patients with the Alzheimer disease profiles (A+T+N- and A+T+N+) were older (both p < 0.05) and had a higher prevalence of APOE ε4 (both p < 0.05) and lower Mini-Mental State Examination (MMSE) (both p < 0.05), memory (both p < 0.05), and visuospatial abilities (both p < 0.05) at baseline. Non-Alzheimer profiles A-T-N+ and A-T+N+ showed more severe white matter hyperintensities (both p < 0.05) and worse language performance (both p < 0.05) than A-T-N-. A linear mixed model showed faster decline on MMSE over time in A+T+N- and A+T+N+ (p = 0.059 and p < 0.001 vs A-T-N-), attributable mainly to patients without dementia. CONCLUSIONS: The ATN scheme identified different biomarker profiles with overlapping baseline features and patterns of cognitive decline. The large number of profiles, which may have different implications in patients with vs without dementia, poses a challenge to the application of the ATN scheme.
  •  
2.
  • Bahce, Idris, et al. (författare)
  • Development of [11C]erlotinib Positron Emission Tomography for In Vivo Evaluation of EGF Receptor Mutational Status
  • 2013
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 19:1, s. 183-193
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To evaluate whether, in patients with non-small cell lung carcinoma (NSCLC), tumor uptake of [(11)C]erlotinib can be quantified and imaged using positron emission tomography and to assess whether the level of tracer uptake corresponds with the presence of activating tumor EGF receptor (EGFR) mutations.EXPERIMENTAL DESIGN: Ten patients with NSCLCs, five with an EGFR exon 19 deletion, and five without were scanned twice (test retest) on the same day with an interval of at least 4 hours. Each scanning procedure included a low-dose computed tomographic scan, a 10-minute dynamic [(15)O]H(2)O scan, and a 1-hour dynamic [(11)C]erlotinib scan. Data were analyzed using full tracer kinetic modeling. EGFR expression was evaluated using immunohistochemistry.RESULTS: The quantitative measure of [(11)C]erlotinib uptake, that is, volume of distribution (V(T)), was significantly higher in tumors with activating mutations, that is, all with exon 19 deletions (median V(T), 1.76; range, 1.25-2.93), than in those without activating mutations (median V(T), 1.06; range, 0.67-1.22) for both test and retest data (P = 0.014 and P = 0.009, respectively). Good reproducibility of [(11)C]erlotinib V(T) was seen (intraclass correlation coefficient = 0.88). Intergroup differences in [(11)C]erlotinib uptake were not correlated with EGFR expression levels, nor tumor blood flow.CONCLUSION: [(11)C]erlotinib V(T) was significantly higher in NSCLCs tumors with EGFR exon 19 deletions.
  •  
3.
  • Bollack, Ariane, et al. (författare)
  • Investigating reliable amyloid accumulation in Centiloids : Results from the AMYPAD Prognostic and Natural History Study
  • 2024
  • Ingår i: Alzheimer's and Dementia. - 1552-5260 .- 1552-5279. ; 20:5, s. 3429-3441
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: To support clinical trial designs focused on early interventions, our study determined reliable early amyloid-β (Aβ) accumulation based on Centiloids (CL) in pre-dementia populations. METHODS: A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease–Prognostic and Natural History Study (AMYPAD-PNHS) and Insight46 who underwent [18F]flutemetamol, [18F]florbetaben or [18F]florbetapir amyloid-PET were included. A normative strategy was used to define reliable accumulation by estimating the 95th percentile of longitudinal measurements in sub-populations (NPNHS = 101/750, NInsight46 = 35/382) expected to remain stable over time. The baseline CL threshold that optimally predicts future accumulation was investigated using precision-recall analyses. Accumulation rates were examined using linear mixed-effect models. RESULTS: Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year. Baseline CL of 16 [12,19] best predicted future Aβ-accumulators. Rates of amyloid accumulation were tracer-independent, lower for APOE ε4 non-carriers, and for subjects with higher levels of education. DISCUSSION: Our results support a 12–20 CL window for inclusion into early secondary prevention studies. Reliable accumulation definition warrants further investigations.
  •  
4.
  • de Wilde, Arno, et al. (författare)
  • Assessment of the appropriate use criteria for amyloid PET in an unselected memory clinic cohort : The ABIDE project
  • 2019
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260.
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The objective of this study was to assess the usefulness of the appropriate use criteria (AUC) for amyloid imaging in an unselected cohort. Methods: We calculated sensitivity and specificity of appropriate use (increased confidence and management change), as defined by Amyloid Imaging Taskforce in the AUC, and other clinical utility outcomes. Furthermore, we compared differences in post–positron emission tomography diagnosis and management change between “AUC-consistent” and “AUC-inconsistent” patients. Results: Almost half (250/507) of patients were AUC-consistent. In both AUC-consistent and AUC-inconsistent patients, post–positron emission tomography diagnosis (28%–21%) and management (32%–17%) change was substantial. The Amyloid Imaging Taskforce's definition of appropriate use occurred in 55/507 (13%) patients, detected by the AUC with a sensitivity of 93%, and a specificity of 56%. Diagnostic changes occurred independently of AUC status (sensitivity: 57%, specificity: 53%). Discussion: The current AUC are not sufficiently able to discriminate between patients who will benefit from amyloid positron emission tomography and those who will not.
  •  
5.
  • Heeman, Fiona, et al. (författare)
  • [11C]PIB amyloid quantification : effect of reference region selection
  • 2020
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The standard reference region (RR) for amyloid-beta (Aβ) PET studies is the cerebellar grey matter (GMCB), while alternative RRs have mostly been utilized without prior validation against the gold standard. This study compared five commonly used RRs to gold standard plasma input-based quantification using the GMCB. Methods: Thirteen subjects from a test–retest (TRT) study and 30 from a longitudinal study were retrospectively included (total: 17 Alzheimer’s disease, 13 mild cognitive impairment, 13 controls). Dynamic [11C]PiB PET (90 min) and T1-weighted MR scans were co-registered and time–activity curves were extracted for cortical target regions and the following RRs: GMCB, whole cerebellum (WCB), white matter brainstem/pons (WMBS), whole brainstem (WBS) and eroded subcortical white matter (WMES). A two-tissue reversible plasma input model (2T4k_Vb) with GMCB as RR, reference Logan and the simplified reference tissue model were used to derive distribution volume ratios (DVRs), and standardized uptake value (SUV) ratios were calculated for 40–60 min and 60–90 min intervals. Parameter variability was evaluated using TRT scans, and correlations and agreements with the gold standard (DVR from 2T4k_Vb with GMCB RR) were also assessed. Next, longitudinal changes in SUVs (both intervals) were assessed for each RR. Finally, the ability to discriminate between visually Aβ positive and Aβ negative scans was assessed. Results: All RRs yielded stable TRT performance (max 5.1% variability), with WCB consistently showing lower variability. All approaches were able to discriminate between Aβ positive and Aβ negative scans, with highest effect sizes obtained for GMCB (range − 0.9 to − 0.7), followed by WCB (range − 0.8 to − 0.6). Furthermore, all approaches provided good correlations with the gold standard (r ≥ 0.78), while the highest bias (as assessed by the regression slope) was observed using WMES (range slope 0.52–0.67), followed by WBS (range slope 0.58–0.92) and WMBS (range slope 0.62–0.91). Finally, RR SUVs were stable across a period of 2.6 years for all except WBS and WMBS RRs (60–90 min interval). Conclusions: GMCB and WCB are considered the best RRs for quantifying amyloid burden using [11C]PiB PET.
  •  
6.
  • Knudsen, Gitte M, et al. (författare)
  • Guidelines for the content and format of PET brain data in publications and archives : A consensus paper
  • 2020
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X .- 1559-7016. ; 40:8, s. 1576-1585
  • Tidskriftsartikel (refereegranskat)abstract
    • It is a growing concern that outcomes of neuroimaging studies often cannot be replicated. To counteract this, the magnetic resonance (MR) neuroimaging community has promoted acquisition standards and created data sharing platforms, based on a consensus on how to organize and share MR neuroimaging data. Here, we take a similar approach to positron emission tomography (PET) data. To facilitate comparison of findings across studies, we first recommend publication standards for tracer characteristics, image acquisition, image preprocessing, and outcome estimation for PET neuroimaging data. The co-authors of this paper, representing more than 25 PET centers worldwide, voted to classify information as mandatory, recommended, or optional. Second, we describe a framework to facilitate data archiving and data sharing within and across centers. Because of the high cost of PET neuroimaging studies, sample sizes tend to be small and relatively few sites worldwide have the required multidisciplinary expertise to properly conduct and analyze PET studies. Data sharing will make it easier to combine datasets from different centers to achieve larger sample sizes and stronger statistical power to test hypotheses. The combining of datasets from different centers may be enhanced by adoption of a common set of best practices in data acquisition and analysis.
  •  
7.
  • Lopes Alves, Isadora, et al. (författare)
  • Strategies to reduce sample sizes in Alzheimer’s disease primary and secondary prevention trials using longitudinal amyloid PET imaging
  • 2021
  • Ingår i: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Detecting subtle-to-moderate biomarker changes such as those in amyloid PET imaging becomes increasingly relevant in the context of primary and secondary prevention of Alzheimer’s disease (AD). This work aimed to determine if and when distribution volume ratio (DVR; derived from dynamic imaging) and regional quantitative values could improve statistical power in AD prevention trials. Methods: Baseline and annualized % change in [11C]PIB SUVR and DVR were computed for a global (cortical) and regional (early) composite from scans of 237 cognitively unimpaired subjects from the OASIS-3 database (www.oasis-brains.org). Bland-Altman and correlation analyses were used to assess the relationship between SUVR and DVR. General linear models and linear mixed effects models were used to determine effects of age, sex, and APOE-ε4 carriership on baseline and longitudinal amyloid burden. Finally, differences in statistical power of SUVR and DVR (cortical or early composite) were assessed considering three anti-amyloid trial scenarios: secondary prevention trials including subjects with (1) intermediate-to-high (Centiloid > 20.1), or (2) intermediate (20.1 < Centiloid ≤ 49.4) amyloid burden, and (3) a primary prevention trial focusing on subjects with low amyloid burden (Centiloid ≤ 20.1). Trial scenarios were set to detect 20% reduction in accumulation rates across the whole population and in APOE-ε4 carriers only. Results: Although highly correlated to DVR (ρ =.96), cortical SUVR overestimated DVR cross-sectionally and in annual % change. In secondary prevention trials, DVR required 143 subjects per arm, compared with 176 for SUVR. Both restricting inclusion to individuals with intermediate amyloid burden levels or to APOE-ε4 carriers alone further reduced sample sizes. For primary prevention, SUVR required less subjects per arm (n = 855) compared with DVR (n = 1508) and the early composite also provided considerable sample size reductions (n = 855 to n = 509 for SUVR, n = 1508 to n = 734 for DVR). Conclusion: Sample sizes in AD secondary prevention trials can be reduced by the acquisition of dynamic PET scans and/or by restricting inclusion to subjects with intermediate amyloid burden or to APOE-ε4 carriers only. Using a targeted early composite only leads to reductions of sample size requirements in primary prevention trials. These findings support strategies to enable smaller Proof-of-Concept Phase II clinical trials to better streamline drug development.
  •  
8.
  • Mansor, Syahir, et al. (författare)
  • Parametric Methods for Dynamic (11)C-Phenytoin PET Studies.
  • 2017
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 58:3, s. 479-483
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the performance of various methods for generating quantitative parametric images of dynamic (11)C-phenytoin PET studies was evaluated. Methods: Double-baseline 60-min dynamic (11)C-phenytoin PET studies, including online arterial sampling, were acquired for 6 healthy subjects. Parametric images were generated using Logan plot analysis, a basis function method, and spectral analysis. Parametric distribution volume (VT) and influx rate (K1) were compared with those obtained from nonlinear regression analysis of time-activity curves. In addition, global and regional test-retest (TRT) variability was determined for parametric K1 and VT values. Results: Biases in VT observed with all parametric methods were less than 5%. For K1, spectral analysis showed a negative bias of 16%. The mean TRT variabilities of VT and K1 were less than 10% for all methods. Shortening the scan duration to 45 min provided similar VT and K1 with comparable TRT performance compared with 60-min data. Conclusion: Among the various parametric methods tested, the basis function method provided parametric VT and K1 values with the least bias compared with nonlinear regression data and showed TRT variabilities lower than 5%, also for smaller volume-of-interest sizes (i.e., higher noise levels) and shorter scan duration.
  •  
9.
  • Timmers, Tessa, et al. (författare)
  • Amyloid PET and cognitive decline in cognitively normal individuals : the SCIENCe project
  • 2019
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 79, s. 50-58
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the relationships between amyloid-β PET and concurrent and longitudinal cognitive performance in 107 cognitively normal individuals with subjective cognitive decline (age: 64 ± 8 years, 44% female, Mini-Mental State Examination score 29 ± 1). All underwent 90-minute dynamic [ 18 F]florbetapir PET scanning and longitudinal neuropsychological tests with a mean follow-up of 3.4 ± 3.0 years. Receptor parametric mapping was used to calculate [ 18 F]florbetapir binding potential (BP ND ), and we performed linear mixed models to assess the relationships between global [ 18 F]florbetapir BP ND and neuropsychological performance. Higher [ 18 F]florbetapir BP ND was related to lower concurrent Mini-Mental State Examination (β ± SE: −1.69 ± 0.63 p < 0.01) and to steeper rate of decline on tasks capturing memory (Rey Auditory Verbal Learning Task immediate [β ± SE −1.81 ± 0.81, p < 0.05] and delayed recall [β ± SE −1.19 ± 0.34, p < 0.01]), attention/executive functions (Stroop II [color] [β ± SE −0.02 ± 0.01, p < 0.05], Stroop III [word-color] [β ± SE −0.03 ± 0.02, p < 0.05]), and language (category fluency [β ± SE −0.04 ± 0.01, p < 0.01]). These findings suggest that higher amyloid-β load in cognitively normal individuals with subjective cognitive decline from a memory clinic is associated with lower concurrent global cognition and with faster rate of decline in a variety of cognitive domains.
  •  
10.
  • Tuncel, Hayel, et al. (författare)
  • Effect of Shortening the Scan Duration on Quantitative Accuracy of [18F]Flortaucipir Studies
  • 2021
  • Ingår i: Molecular Imaging and Biology. - : Springer Science and Business Media LLC. - 1536-1632 .- 1860-2002. ; 23:4, s. 604-613
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Dynamic positron emission tomography (PET) protocols allow for accurate quantification of [18F]flortaucipir-specific binding. However, dynamic acquisitions can be challenging given the long required scan duration of 130 min. The current study assessed the effect of shorter scan protocols for [18F]flortaucipir on its quantitative accuracy. Procedures: Two study cohorts with Alzheimer’s disease (AD) patients and healthy controls (HC) were included. All subjects underwent a 130-min dynamic [18F]flortaucipir PET scan consisting of two parts (0–60/80–130 min) post-injection. Arterial sampling was acquired during scanning of the first cohort only. For the second cohort, a second PET scan was acquired within 1–4 weeks of the first PET scan to assess test-retest repeatability (TRT). Three alternative time intervals were explored for the second part of the scan: 80–120, 80–110 and 80–100 min. Furthermore, the first part of the scan was also varied: 0–50, 0–40 and 0–30 min time intervals were assessed. The gap in the reference TACs was interpolated using four different interpolation methods: population-based input function 2T4k_VB (POP-IP_2T4k_VB), cubic, linear and exponential. Regional binding potential (BPND) and relative tracer delivery (R1) values estimated using simplified reference tissue model (SRTM) and/or receptor parametric mapping (RPM). The different scan protocols were compared to the respective values estimated using the original scan acquisition. In addition, TRT of the RPM BPND and R1 values estimated using the optimal shortest scan duration was also assessed. Results: RPM BPND and R1 obtained using 0–30/80–100 min scan and POP-IP_2T4k_VB reference region interpolation had an excellent correlation with the respective parametric values estimated using the original scan duration (r2 > 0.95). The TRT of RPM BPND and R1 using the shortest scan duration was − 1 ± 5 % and − 1 ± 6 % respectively. Conclusions: This study demonstrated that [18F]flortaucipir PET scan can be acquired with sufficient quantitative accuracy using only 50 min of dual-time-window scanning time.
  •  
11.
  • van der Doef, Thalia F, et al. (författare)
  • In vivo (R)-[(11)C]PK11195 PET imaging of 18kDa translocator protein in recent onset psychosis.
  • 2016
  • Ingår i: NPJ schizophrenia. - : Springer Science and Business Media LLC. - 2334-265X. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence is accumulating that immune dysfunction is involved in the pathophysiology of schizophrenia. It has been hypothesized that microglia activation is present in patients with schizophrenia. Various in vivo and post-mortem studies have investigated this hypothesis, but as yet with inconclusive results. Microglia activation is associated with elevations in 18 kDa translocator protein (TSPO) levels, which can be measured with the positron emission tomography (PET) tracer (R)-[(11)C]PK11195. The purpose of the present study was to investigate microglia activation in psychosis in vivo at an early stage of the disease. (R)-[(11)C]PK11195 binding potential (BPND) was measured in 19 patients with recent onset psychosis and 17 age and gender-matched healthy controls. Total gray matter, as well as five gray matter regions of interest (frontal cortex, temporal cortex, parietal cortex, striatum, and thalamus) were defined a priori. PET data were analysed using a reference tissue approach and a supervised cluster analysis algorithm to identify the reference region. No significant difference in (R)-[(11)C]PK11195 BPND between patients and controls was found in total gray matter, nor one of the regions of interest. These findings suggest that microglia activation is not present in recent onset psychosis or that it is a subtle phenomenon that could not be detected using the design of the present study.
  •  
12.
  • van der Veldt, Astrid A M, et al. (författare)
  • Absolute Quantification of [11C]docetaxel Kinetics in Lung Cancer Patients Using Positron Emission Tomography
  • 2011
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 17:14, s. 4814-4824
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose:Tumor resistance to docetaxel may be associated with reduced drug concentrations in tumor tissue. Positron emission tomography (PET) allows for quantification of radiolabeled docetaxel ([11C]docetaxel) kinetics and might be useful for predicting response to therapy. The primary objective was to evaluate the feasibility of quantitative [11C]docetaxel PET scans in lung cancer patients. The secondary objective was to investigate whether [11C]docetaxel kinetics were associated with tumor perfusion, tumor size, and dexamethasone administration.Experimental Design:Thirty-four lung cancer patients underwent dynamic PET–computed tomography (CT) scans using [11C]docetaxel. Blood flow was measured using oxygen-15 labeled water. The first 24 patients were premedicated with dexamethasone. For quantification of [11C]docetaxel kinetics, the optimal tracer kinetic model was developed and a noninvasive procedure was validated.Results:Reproducible quantification of [11C]docetaxel kinetics in tumors was possible using a noninvasive approach (image derived input function). Thirty-two lesions (size ≥4 cm3) were identified, having a variable net influx rate of [11C]docetaxel (range, 0.0023–0.0229 mL·cm−3·min−1). [11C]docetaxel uptake was highly related to tumor perfusion (Spearman's ρ = 0.815;P < 0.001), but not to tumor size (Spearman's ρ = −0.140; P = 0.446). Patients pretreated with dexamethasone showed lower [11C]docetaxel uptake in tumors (P = 0.013). Finally, in a subgroup of patients who subsequently received docetaxel therapy, relative high [11C]docetaxel uptake was related with improved tumor response.Conclusions:Quantification of [11C]docetaxel kinetics in lung cancer was feasible in a clinical setting. Variable [11C]docetaxel kinetics in tumors may reflect differential sensitivity to docetaxel therapy. Our findings warrant further studies investigating the predictive value of [11C]docetaxel uptake and the effects of comedication on [11C]docetaxel kinetics in tumors.
  •  
13.
  • Verfaillie, Sander C.J., et al. (författare)
  • Amyloid-β load is related to worries, but not to severity of cognitive complaints in individuals with subjective cognitive decline : The science project
  • 2019
  • Ingår i: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 11:JAN
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Subjective cognitive decline (SCD) is associated with an increased risk of Alzheimer's Disease (AD). Early disease processes, such as amyloid-β aggregation measured with quantitative PET, may help to explain the phenotype of SCD. The aim of this study was to investigate whether quantitative amyloid-β load is associated with both self- and informant-reported cognitive complaints and memory deficit awareness in individuals with SCD. Methods: We included 106 SCD patients (mean ± SD age: 64 ± 8, 45%F) with 90 min dynamic [ 18 F]florbetapir PET scans. We used the following questionnaires to assess SCD severity: cognitive change index (CCI, self and informant reports; 2 × 20 items), subjective cognitive functioning (SCF, four items), and five questions “Do you have complaints?” (yes/no) for memory, attention, organization and language), and “Does this worry you? (yes/no).” The Rivermead Behavioral Memory Test (RBMT)-Stories (immediate and delayed recall) was used to assess objective episodic memory. To investigate the level of self-awareness, we calculated a memory deficit awareness index (Z-transformed (inverted self-reported CCI minus episodic memory); higher index, heightened self-awareness) and a self-proxy index (Z-transformed self- minus informant-reported CCI). Mean cortical [ 18 F]florbetapir binding potential (BPND) was derived from the PET data. Logistic and linear regression analyses, adjusted for age, sex, education, and depressive symptoms, were used to investigate associations between BPND and measures of SCD. Results: Higher mean cortical [ 18 F]florbetapir BPND was associated with SCD-related worries (odds ratio = 1.76 [95%CI = 1.07 ± 2.90]), but not with other SCD questionnaires (informant and self-report CCI or SCF, total scores or individual items, all p > 0.05). In addition, higher mean cortical [ 18 F]florbetapir BPND was associated with a higher memory deficit awareness index (Beta = 0.55), with an interaction between BPND and education (p = 0.002). There were no associations between [ 18 F]florbetapir BPND and self-proxy index (Beta = 0.11). Conclusion: Amyloid-β deposition was associated with SCD-related worries and heightened memory deficit awareness (i.e., hypernosognosia), but not with severity of cognitive complaints. Our findings indicate that worries about self-perceived decline may reflect an early symptom of amyloid-β related pathology rather than subjective cognitive functioning.
  •  
14.
  • Visser, Denise, et al. (författare)
  • Longitudinal Tau PET Using 18F-Flortaucipir : The Effect of Relative Cerebral Blood Flow on Quantitative and Semiquantitative Parameters
  • 2023
  • Ingår i: Journal of nuclear medicine : official publication, Society of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505. ; 64:2, s. 281-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiquantitative PET measures such as SUV ratio (SUVr) have several advantages over quantitative measures, such as practical applicability and relative computational simplicity. However, SUVr may potentially be affected by changes in blood flow, whereas quantitative measures such as nondisplaceable binding potential (BPND) are not. For 18F-flortaucipir PET, the sensitivity of SUVr for changes in blood flow is currently unknown. Therefore, we compared semiquantitative (SUVr) and quantitative (BPND) parameters of longitudinal 18F-flortaucipir PET scans and assessed their vulnerability to changes in blood flow. Methods: Subjects with subjective cognitive decline (n = 38) and Alzheimer disease patients (n = 24) underwent baseline and 2-y follow-up dynamic 18F-flortaucipir PET scans. BPND and relative tracer delivery were estimated using receptor parametric mapping, and SUVr at 80-100 min was calculated. Regional SUVrs were compared with corresponding distribution volume ratio (BPND + 1) using paired t tests. Additionally, simulations were performed to model effects of larger flow changes in different binding categories. Results: Results in subjective cognitive decline and Alzheimer disease showed only minor differences between SUVr and BPND changes over time. Relative tracer delivery changes were small in all groups. Simulations illustrated a variable bias for SUVr depending on the amount of binding. Conclusion: SUVr provided an accurate estimate of changes in specific binding for 18F-flortaucipir over a 2-y follow-up during which changes in flow were small. Notwithstanding, simulations showed that large(r) flow changes may affect 18F-flortaucipir SUVr. Given that it is currently unknown to what order of magnitude pharmacotherapeutic interventions may induce changes in cerebral blood flow, caution may be warranted when changes in flow are potentially large(r), as in clinical trials.
  •  
15.
  • Wink, Alle Meije, et al. (författare)
  • Quantifying AD-related brain amyloid with linearised progression models : model-based vs. data-based.
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Brain amyloid-β (Aβ) is the pathological hallmark of Alzheimer's disease (AD). In logistic disease models, Aβ accumulation is a sigmoid function of time-since-disease-onset (TSDO) (figure 1). Previous positron emission tomography (PET)-based models vary accumulation onset(t50) and duration(r) globally; capacity(K) and baseline(NS) regionally (Whittington2018). We confirm existing approaches and propose a more powerful ICA-based approach to quantify disease severity and estimate TSDO. Method: We used 1071 18F-florbetapir standard uptake value ratio (SUVR) images from the ADNI-2 study (adni.loni.usc.edu/data-samples/data-types/pet). Images were mapped into MNI space. Averages were extracted using the Harvard-Oxford brain-atlas. Whole-brain tracer-specific sigmoid parameters (Jack2013) obtained from the literature were used to estimate TSDO. Of 16 models of regional Aβ accumulation (each of the 4 regional sigmoid parameters varied either regionally or globally), the optimal Bayesian information criterion was found with global t50 and r, and regional NS and K (figure 1) with global values r=6.16y and t50=4.10y. Linearised maps of NS and K were obtained by regressing the SUVR maps onto the global sigmoid. We also estimated these maps as independent components, using a 2-component ICA on the SUVR maps. Both outcomes were used to quantify Aβ accumulation from SUVR images as weighting factors of the accumulation map. We compared the weights from the logistic model and the ICA model in ADNI, using effect size measured with Hedges' g between cognitively normal (CN), subjective memory complaints (SMC), mild cognitive impairment (EMCI/MCI/LMCI) and AD groups. We compared 3 longitudinal visits (N=112) in the OASIS-3 study (see www.oasis-brains.org) with both methods, global SUVR and Centiloid (Klunk2015) using 11C-PiB PET SUVR images. Result: Maps of accumulation capacity from both models had spatial correlation of 0.86 (figure 2); baseline maps had spatial correlation of 0.95. Hedges' g between ADNI groups was 2.25 for K, and 2.42 for ICA (1.46 for global SUVR). In OASIS-3, Hedges' g between visits was 1.24 for K, 1.46 for ICA (global SUVR 0.15, Centiloid 0.4). Conclusion: We demonstrate that linear accumulation models can be used to quantify brain Aβ with PET; maps obtained by ICA yield larger effect sizes than the logistic method for differentiating groups and measuring changes between visits.
  •  
16.
  • Wolters, Emma E., et al. (författare)
  • A novel partial volume correction method for accurate quantification of [18F] flortaucipir in the hippocampus
  • 2018
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Off-target binding in the choroid plexus (CP) may cause spill-in of the tau PET tracer [18F] flortaucipir into the adjacent hippocampus region. The impact of this spill-in on hippocampal uptake was assessed using a novel partial volume correction method (PVC). Methods: PVC was performed on 20 [18F] flortaucipir dynamic PET scans (10 probable AD and 10 controls). Volumes of interest (VOIs) were defined for both hippocampus and CP. The correlation between hippocampal and CP distribution volume (VT), with and without PVC, was determined. Both anatomically defined and eroded VOIs were used. Results: For controls, the correlation between hippocampal and CP VT was significantly reduced after using PVC along with an eroded VOI (r2 = 0.59, slope = 0.80 versus r2 = 0.15, slope = 0.15; difference: p < 0.05). The same was true for AD patients (p < 0.05). Conclusion: PVC together with an optimized hippocampal VOI resulted in effective reduction of CP spill-in and improved accuracy of hippocampal VT.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy