SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Yatsuya H.) "

Search: WFRF:(Yatsuya H.)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Cousin, E., et al. (author)
  • Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019
  • 2022
  • In: Lancet Diabetes & Endocrinology. - : Elsevier BV. - 2213-8587. ; 10:3, s. 177-192
  • Journal article (peer-reviewed)abstract
    • Background Diabetes, particularly type 1 diabetes, at younger ages can be a largely preventable cause of death with the correct health care and services. We aimed to evaluate diabetes mortality and trends at ages younger than 25 years globally using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We used estimates of GBD 2019 to calculate international diabetes mortality at ages younger than 25 years in 1990 and 2019. Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and other surveillance systems for 1990-2019. We estimated death rates for each location using the GBD Cause of Death Ensemble model. We analysed the association of age-standardised death rates per 100 000 population with the Socio-demographic Index (SDI) and a measure of universal health coverage (UHC) and described the variability within SDI quintiles. We present estimates with their 95% uncertainty intervals. Findings In 2019, 16 300 (95% uncertainty interval 14 200 to 18 900) global deaths due to diabetes (type 1 and 2 combined) occurred in people younger than 25 years and 73.7% (68.3 to 77.4) were classified as due to type 1 diabetes. The age-standardised death rate was 0.50 (0.44 to 0.58) per 100 000 population, and 15 900 (97.5%) of these deaths occurred in low to high-middle SDI countries. The rate was 0.13 (0.12 to 0.14) per 100 000 population in the high SDI quintile, 0.60 (0.51 to 0.70) per 100 000 population in the low-middle SDI quintile, and 0.71 (0.60 to 0.86) per 100 000 population in the low SDI quintile. Within SDI quintiles, we observed large variability in rates across countries, in part explained by the extent of UHC (r(2)=0.62). From 1990 to 2019, age-standardised death rates decreased globally by 17.0% (-28.4 to -2.9) for all diabetes, and by 21.0% (-33.0 to -5.9) when considering only type 1 diabetes. However, the low SDI quintile had the lowest decline for both all diabetes (-13.6% [-28.4 to 3.4]) and for type 1 diabetes (-13.6% [-29.3 to 8.9]). Interpretation Decreasing diabetes mortality at ages younger than 25 years remains an important challenge, especially in low and low-middle SDI countries. Inadequate diagnosis and treatment of diabetes is likely to be major contributor to these early deaths, highlighting the urgent need to provide better access to insulin and basic diabetes education and care. This mortality metric, derived from readily available and frequently updated GBD data, can help to monitor preventable diabetes-related deaths over time globally, aligned with the UN's Sustainable Development Targets, and serve as an indicator of the adequacy of basic diabetes care for type 1 and type 2 diabetes across nations. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Naghavi, Mohsen, et al. (author)
  • Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013
  • 2015
  • In: The Lancet. - 1474-547X .- 0140-6736. ; 385:9963, s. 117-171
  • Journal article (peer-reviewed)abstract
    • Background Up-to-date evidence on levels and trends for age-sex-specifi c all-cause and cause-specifi c mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specifi c all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specifi c causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65.3 years (UI 65.0-65.6) in 1990, to 71.5 years (UI 71.0-71.9) in 2013, while the number of deaths increased from 47.5 million (UI 46.8-48.2) to 54.9 million (UI 53.6-56.3) over the same interval. Global progress masked variation by age and sex: for children, average absolute diff erences between countries decreased but relative diff erences increased. For women aged 25-39 years and older than 75 years and for men aged 20-49 years and 65 years and older, both absolute and relative diff erences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10.7%, from 4.3 million deaths in 1990 to 4.8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specifi c mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Feigin, Valery L., et al. (author)
  • Global, regional, and national burden of neurological disorders, 1990–2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2019
  • In: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 18:5, s. 459-480
  • Journal article (peer-reviewed)abstract
    • Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders.Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach.Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable).Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies.Funding: Bill & Melinda Gates Foundation.
  •  
11.
  • Feigin, Valery L., et al. (author)
  • Global, regional, and national burden of stroke and its risk factors, 1990-2019 : a systematic analysis for the Global Burden of Disease Study 2019
  • 2021
  • In: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 20:10, s. 795-820
  • Journal article (peer-reviewed)abstract
    • Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12.2 million (95% UI 11.0-13.6) incident cases of stroke, 101 million (93.2-111) prevalent cases of stroke, 143 million (133-153) DALYs due to stroke, and 6.55 million (6.00-7.02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11.6% [10.8-12.2] of total deaths) and the third-leading cause of death and disability combined (5.7% [5.1-6.2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70.0% (67.0-73.0), prevalent strokes increased by 85.0% (83.0-88.0), deaths from stroke increased by 43.0% (31.0-55.0), and DALYs due to stroke increased by 32.0% (22.0-42.0). During the same period, age-standardised rates of stroke incidence decreased by 17.0% (15.0-18.0), mortality decreased by 36.0% (31.0-42.0), prevalence decreased by 6.0% (5.0-7.0), and DALYs decreased by 36.0% (31.0-42.0). However, among people younger than 70 years, prevalence rates increased by 22.0% (21.0-24.0) and incidence rates increased by 15.0% (12.0-18.0). In 2019, the age-standardised stroke-related mortality rate was 3.6 (3.5-3.8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3.7 (3.5-3.9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62.4% of all incident strokes in 2019 (7.63 million [6.57-8.96]), while intracerebral haemorrhage constituted 27.9% (3.41 million [2.97-3.91]) and subarachnoid haemorrhage constituted 9.7% (1.18 million [1.01-1.39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79.6 million [67.7-90.8] DALYs or 55.5% [48.2-62.0] of total stroke DALYs), high body-mass index (34.9 million [22.3-48.6] DALYs or 24.3% [15.7-33.2]), high fasting plasma glucose (28.9 million [19.8-41.5] DALYs or 20.2% [13.8-29.1]), ambient particulate matter pollution (28.7 million [23.4-33.4] DALYs or 20.1% [16.6-23.0]), and smoking (25.3 million [22.6-28.2] DALYs or 17.6% [16.4-19.0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.
  •  
12.
  •  
13.
  •  
14.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view