SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yki Jarvinen Hannele) "

Sökning: WFRF:(Yki Jarvinen Hannele)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Hardy, Timothy, et al. (författare)
  • The European NAFLD Registry : A real-world longitudinal cohort study of nonalcoholic fatty liver disease
  • 2020
  • Ingår i: Contemporary Clinical Trials. - : Elsevier. - 1551-7144 .- 1559-2030. ; 98
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-Alcoholic Fatty Liver Disease (NAFLD), a progressive liver disease that is closely associated with obesity, type 2 diabetes, hypertension and dyslipidaemia, represents an increasing global public health challenge. There is significant variability in the disease course: the majority exhibit only fat accumulation in the liver but a significant minority develop a necroinflammatory form of the disease (non-alcoholic steatohepatitis, NASH) that may progress to cirrhosis and hepatocellular carcinoma. At present our understanding of pathogenesis, disease natural history and long-term outcomes remain incomplete. There is a need for large, well characterised patient cohorts that may be used to address these knowledge gaps and to support the development of better biomarkers and novel therapies. The European NAFLD Registry is an international, prospectively recruited observational cohort study that aims to establish a large, highly-phenotyped patient cohort and linked bioresource. Here we describe the infrastructure, data management and monitoring plans, and the standard operating procedures implemented to ensure the timely and systematic collection of high-quality data and samples. Already recruiting subjects at secondary/tertiary care centres across Europe, the Registry is supporting the European Union IMI2-funded LITMUS Liver Investigation: Testing Marker Utility in Steatohepatitis consortium, which is a major international effort to robustly validate biomarkers that diagnose, risk stratify and/or monitor NAFLD progression and liver fibrosis stage. The European NAFLD Registry has the demonstrable capacity to support research and biomarker development at scale and pace.
  •  
4.
  • Hyysalo, Jenni, et al. (författare)
  • Genetic variation in PNPLA3 but not APOC3 influences liver fat in non-alcoholic fatty liver disease
  • 2012
  • Ingår i: Journal of Gastroenterology and Hepatology. - : Wiley. - 0815-9319. ; 27:5, s. 951-956
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aim: A recent study in Indian subjects suggested common variants in apolipoprotein C3 (APOC3) (T-455C at rs2854116 and C-482T at rs2854117) to contribute to non-alcoholic fatty liver disease (NAFLD), plasma apoC3 and triglyceride concentrations. Our aim was to determine the contribution of genetic variation in APOC3 on liver fat content and plasma triglyceride and apoC3 concentrations in a larger European cohort. Methods: Atotal of 417 Finnish individuals were genotyped for rs2854116 and rs2854117 in APOC3 and the known rs738409 in patatin-like phospholipase domain-containing protein 3 (PNPLA3) influencing liver fat. Plasma apoC3 concentration was measured enzymatically, and liver fat by proton magnetic resonance spectroscopy. Results: APOC3 wild-type homozygotes and variant allele (T-455C or C-482T or both) carriers did not differ with regard to liver fat, apoC3 concentrations, triglyceride-, high density lipoprotein-, fasting plasma glucose, insulin-, alanine aminotransferase-and aspartate aminotransferase-concentrations, nor was there a difference in prevalence of NAFLD. In contrast, carriers of the PNPLA3 GG genotype at rs738409 had a 2.7-fold (median 11.3%) higher liver fat than those with the CC (median 4.2%) genotype. The PNPLA3 rs738409 was also an independent predictor of liver fat, together with age, gender, and body mass index. Conclusion: Genetic variants in PNPLA3 but not APOC3 contribute to the variance in liver fat content due to NAFLD.
  •  
5.
  • Kotronen, Anna, et al. (författare)
  • Genetic variation in the ADIPOR2 gene is associated with liver fat content and its surrogate markers in three independent cohorts
  • 2009
  • Ingår i: European Journal of Endocrinology. - 1479-683X. ; 160:4, s. 593-602
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We investigated whether polymorph isms in candidate genes involved in lipid metabolism and type 2 diabetes are related to liver I, at content. Methods: Liver fat content was measured using proton magnetic resonance spectroscopy (H-1-MRS) in 302 Finns, in whom single nucleotide polymorphisms (SNPs) in acyl-CoA synthetase long-chain family member 4 (ACSL4). acliponectin receptors 1 and 2 (ADIPOR1 and ADIPOR2), and the three peroxisome proliferator-activated receptors (PPARA, PPARD, and PPARG) were analyzed. To validate our findings, SNPs significantly associated with liver fat content were Studied in two independent cohorts and related to surrogate markers of liver fat content. Results: In the Finnish subjects, polymorphisms in ACSL4 (rs7887981), ADIPOR2 (rs767870), and PPARG (rs3856806) were significantly associated with liver fat content measured with H-1-MRS after adjusting for age, gender, and BMI, Anthropometric and circulating parameters were comparable between genotypes. In the first validation cohort of similar to 600 Swedish men, ACSL4 rs7887981 was related to fasting insulin and triglyceride concentrations, and ADIPOR2 rs767870 to serum gamma glutamyltransfer concentrations after adjusting for BMI. The SNP in PPARG (rs3856806) was not significantly associated with any relevant metabolic parameter in this cohort. In the second validation cohort of similar to 3000 subjects from Western Finland, ADIPOR2 rs767870, but not ACSL4 rs7887981 was related to fasting triglyceride concentrations. Conclusions: Genetic variation, particularly in the ADIPOR2 gene, contributes to variation in hepatic fat accumulation in humans.
  •  
6.
  • Kotronen, Anna, et al. (författare)
  • Prediction of Non-Alcoholic Fatty Liver Disease and Liver Fat Using Metabolic and Genetic Factors
  • 2009
  • Ingår i: Gastroenterology. - : Elsevier BV. - 1528-0012 .- 0016-5085. ; 137:3, s. 865-872
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: Our aims were to develop a method to accurately predict non-alcoholic fatty liver disease (NAFLD) and liver fat content based on routinely available clinical and laboratory data and to test whether knowledge of the recently discovered genetic variant in the PNPLA3 gene (rs738409) increases accuracy of the prediction. METHODS: Liver fat content was measured using proton magnetic resonance spectroscopy in 470 subjects, who were randomly divided into estimation (two thirds of the subjects, n = 313) and validation (one third of the subjects, n = 157) groups. Multivariate logistic and linear regression analyses were used to create an NAFLD liver fat score to diagnose NAFLD and liver fat equation to estimate liver fat percentage in each individual. RESULTS: The presence of the metabolic syndrome and type 2 diabetes, fasting serum (fS) insulin, FS-aspartate aminotransferase (AST), and the AST/alanine aminotransferase ratio were independent predictors of NAFLD. The score had an area under the receiver operating characteristic curve of 0.87 in the estimation and 0.86 in the validation group. The optimal cut-off point of -0.640 predicted increased liver fat content with sensitivity of 86% and specificity of 71%. Addition of the genetic information to the score improved the accuracy of the prediction by only <1%. Using the same variables, we developed a liver fat equation from which liver fat percentage of each individual could be estimated. CONCLUSIONS: The NAFLD liver fat score and liver fat equation provide simple and noninvasive tools to predict NAFLD and liver fat content.
  •  
7.
  • Lee, Jenny, et al. (författare)
  • Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study
  • 2023
  • Ingår i: Hepatology. - : LIPPINCOTT WILLIAMS & WILKINS. - 0270-9139 .- 1527-3350. ; 78:1, s. 258-271
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F >= 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD. Approach and Results: Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS >= 4;53%), at-risk NASH (NASH with F >= 2;35%), significant (F >= 2;47%), and advanced fibrosis (F >= 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82). Conclusions: Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.
  •  
8.
  • Llaurado, Gemma, et al. (författare)
  • Liver Fat Content and Hepatic Insulin Sensitivity in Overweight Patients With Type 1 Diabetes
  • 2015
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 100:2, s. 607-616
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Patients with type 1 diabetes mellitus (T1DM) lack the portal/peripheral insulin gradient, which might diminish insulin stimulation of hepatic lipogenesis and protect against development of nonalcoholic fatty liver disease (NAFLD). We compared liver fat content and insulin sensitivity of hepatic glucose production and lipolysis between overweight T1DM patients and nondiabetic subjects. Materials and Methods: We compared 32 overweight adult T1DM patients and 32 nondiabetic subjects matched for age, body mass index (BMI), and gender. Liver fat content was measured using proton magnetic resonance spectroscopy (H-1-MRS), body composition by magnetic resonance imaging, and insulin sensitivity using the euglycemic-hyperinsulinemic clamp technique (insulin 0.4 mU/kg.min combined with infusion of D-[3-H-3] glucose). We also hypothesized that low liver fat might protect from obesity-associated increases in insulin requirements and, therefore, determined insulin requirements across BMI categories in 3164 T1DM patients. Results: Liver fat content was significantly lower in T1DM patients than in nondiabetic subjects (0.6% [25th-75th quartiles, 0.3%-1.1%] vs 9.0% [ 3.0%-18.0%]; P<.001). The endogenous rate of glucose production (R-a) during euglycemic hyperinsulinemia was significantly lower (0.4 [-0.7 to 0.8] mg/kg fat-free mass.min vs 0.9 [0.2-1.6] fat-free mass.min; P=.012) and the percent suppression of endogenous R-a by insulin was significantly greater (89% [78%-112%] vs 77% [50%-94%]; p=.009) in T1DM patients than in nondiabetic subjects. Serum nonesterified fatty acid concentrations during euglycemic hyperinsulinemia were significantly lower (78.5 [33.0-155.0] vs 306 [200.0-438.0] mu mol/L; P<.001) and the percent suppression of nonesterified fatty acids significantly higher (89.1% [78.6%-93.3%] vs 51.4% [36.5%-71.1%]; P<.001) in T1DM patients than in nondiabetic subjects. Insulin doses were similar across BMI categories. Conclusions: T1DM patients might be protected from steatosis and hepatic insulin resistance. Obesity may not increase insulin requirements in T1DM.
  •  
9.
  • Mcteer, Matthew, et al. (författare)
  • Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information
  • 2024
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 19:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Metabolic dysfunction Associated Steatotic Liver Disease (MASLD) outcomes such as MASH (metabolic dysfunction associated steatohepatitis), fibrosis and cirrhosis are ordinarily determined by resource-intensive and invasive biopsies. We aim to show that routine clinical tests offer sufficient information to predict these endpoints.Methods Using the LITMUS Metacohort derived from the European NAFLD Registry, the largest MASLD dataset in Europe, we create three combinations of features which vary in degree of procurement including a 19-variable feature set that are attained through a routine clinical appointment or blood test. This data was used to train predictive models using supervised machine learning (ML) algorithm XGBoost, alongside missing imputation technique MICE and class balancing algorithm SMOTE. Shapley Additive exPlanations (SHAP) were added to determine relative importance for each clinical variable.Results Analysing nine biopsy-derived MASLD outcomes of cohort size ranging between 5385 and 6673 subjects, we were able to predict individuals at training set AUCs ranging from 0.719-0.994, including classifying individuals who are At-Risk MASH at an AUC = 0.899. Using two further feature combinations of 26-variables and 35-variables, which included composite scores known to be good indicators for MASLD endpoints and advanced specialist tests, we found predictive performance did not sufficiently improve. We are also able to present local and global explanations for each ML model, offering clinicians interpretability without the expense of worsening predictive performance.Conclusions This study developed a series of ML models of accuracy ranging from 71.9-99.4% using only easily extractable and readily available information in predicting MASLD outcomes which are usually determined through highly invasive means.
  •  
10.
  • Pavlides, Michael, et al. (författare)
  • Liver investigation: Testing marker utility in steatohepatitis (LITMUS): Assessment & validation of imaging modality performance across the NAFLD spectrum in a prospectively recruited cohort study (the LITMUS imaging study): Study protocol
  • 2023
  • Ingår i: Contemporary Clinical Trials. - : ELSEVIER SCIENCE INC. - 1551-7144 .- 1559-2030. ; 134
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-alcoholic fatty liver disease (NAFLD) is the liver manifestation of the metabolic syndrome with global prevalence reaching epidemic levels. Despite the high disease burden in the population only a small proportion of those with NAFLD will develop progressive liver disease, for which there is currently no approved pharmacotherapy. Identifying those who are at risk of progressive NAFLD currently requires a liver biopsy which is problematic. Firstly, liver biopsy is invasive and therefore not appropriate for use in a condition like NAFLD that affects a large proportion of the population. Secondly, biopsy is limited by sampling and observer dependent variability which can lead to misclassification of disease severity. Non-invasive biomarkers are therefore needed to replace liver biopsy in the assessment of NAFLD. Our study addresses this unmet need. The LITMUS Imaging Study is a prospectively recruited multi-centre cohort study evaluating magnetic resonance imaging and elastography, and ultrasound elastography against liver histology as the reference standard. Imaging biomarkers and biopsy are acquired within a 100-day window. The study employs standardised processes for imaging data collection and analysis as well as a real time central monitoring and quality control process for all the data submitted for analysis. It is anticipated that the high-quality data generated from this study will underpin changes in clinical practice for the benefit of people with NAFLD. Study Registration: clinicaltrials.gov: NCT05479721
  •  
11.
  • Petaja, Elina M., et al. (författare)
  • Adipocyte Size is Associated with NAFLD Independent of Obesity, Fat Distribution, and PNPLA3 Genotype
  • 2013
  • Ingår i: Obesity. - : Wiley. - 1930-739X .- 1930-7381. ; 21:6, s. 1174-1179
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Adipocyte hypertrophy has been suggested to be causally linked with inflammation and systemic insulin resistance. The aim of the study was to determine whether increased adipocyte size is associated with increased liver fat content due to nonalcoholic fatty liver disease (NAFLD) in humans independent of obesity, fat distribution and genetic variation in the patatin-like phospholipase domain-containing 3 gene (PNPLA3; adiponutrin) at rs738409. Design and Methods: One hundred nineteen non-diabetic subjects in a cross-sectional study with a median age of 39 (26-53) years, mean +/- SD BMI of 30.0 +/- 5.7 kg m(-2) were studied. Abdominal subcutaneous (SC) adipocyte size, liver fat [proton magnetic resonance spectroscopy (H-1-MRS)], intra-abdominal (IA), and abdominal SC adipose tissue volumes [magnetic resonance imaging (MRI)] and the PNPLA3 genotype at rs738409 were determined. Univariate and multiple linear regression analysis were used to identify independent predictors of liver fat content. Results: In multiple linear regression analysis, age, gender, BMI, the IA/SC ratio, and PNPLA3 genotype explained 42% of variation in liver fat content. Addition of adipocyte size (P < 0.0001) to the model increased the percent of explanation to 53%. Thus, 21% of known variation in liver fat could be explained by adipocyte size alone. Conclusions:: Increased adipocyte size highly significantly contributes to liver fat accumulation independent of other causes.
  •  
12.
  • Sevastianova, Ksenia, et al. (författare)
  • Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans
  • 2011
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 1938-3207 .- 0002-9165. ; 94:1, s. 104-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The rs738409 C -> G single nucleotide polymorphism in the patatin-like phospholipase domain-containing 3 (PNPLA3; adiponutrin) leads to a missense mutation (I148M), which is associated with increased liver fat but not insulin resistance. The I148M mutation impedes triglyceride hydrolysis in vitro, and its carriers have an increased risk of developing severe liver disease. Objective: We explored whether the rs738409 PNPLA3 G allele influences the ability of weight loss to decrease liver fat or change insulin sensitivity. Design: We recruited 8 subjects who were homozygous for the rs738409 PNPLA3 G allele (PNPLA3-148MM) and 10 who were homozygous for the rs738409 PNPLA3 C allele (PNPLA3-148II). To allow comparison of changes in liver fat, the groups were matched with respect to baseline age, sex, body mass index, and liver fat. The subjects were placed on a hypocaloric low-carbohydrate diet for 6 d. Liver fat content (proton magnetic resonance spectroscopy), whole-body insulin sensitivity of glucose metabolism (euglycemic clamp technique), and lipolysis ([H-2(5)] glycerol infusion) were measured before and after the diet. Results: At baseline, fasting serum insulin and C-peptide concentrations were significantly lower in the PNPLA3-148MM group than in the PNPLA3-148II group, as predicted by study design. Weight loss was not significantly different between groups (PNPLA3-148MM: -3.1 +/- 0.5 kg; PNPLA3-148II: -3.1 +/- 0.4 kg). Liver fat decreased by 45% in the PNPLA3-148MM group (P < 0.001) and by 18% in the PNPLA3-148II group (P < 0.01). Conclusion: Weight loss is effective in decreasing liver fat in subjects who are homozygous for the rs738409 PNPLA3 G or C allele. This trial was registered at www.hus.fi as 233775. Am J Clin Nutr 2011;94:104-11.
  •  
13.
  • Tikka, Saara, et al. (författare)
  • Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients
  • 2009
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 132, s. 933-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary subcortical vascular dementia. It is caused by mutations in NOTCH3 gene, which encodes a large transmembrane receptor Notch3. The key pathological finding is the accumulation of granular osmiophilic material (GOM), which contains extracellular domains of Notch3, on degenerating vascular smooth muscle cells (VSMCs). GOM has been considered specifically diagnostic for CADASIL, but the reports on the sensitivity of detecting GOM in patients skin biopsy have been contradictory. To solve this contradiction, we performed a retrospective investigation of 131 Finnish, Swedish and French CADASIL patients, who had been adequately examined for both NOTCH3 mutation and presence of GOM. The patients were examined according to the diagnostic practice in each country. NOTCH3 mutations were assessed by restriction enzyme analysis of specific mutations or by sequence analysis. Presence of GOM was examined by electron microscopy (EM) in skin biopsies. Biopsies of 26 mutation-negative relatives from CADASIL families served as the controls. GOM was detected in all 131 mutation positive patients. Altogether our patients had 34 different pathogenic mutations which included three novel point mutations (p.Cys67Ser, p.Cys251Tyr and p.Tyr1069Cys) and a novel duplication (p.Glu434_Leu436dup). The detection of GOM by EM in skin biopsies was a highly reliable diagnostic method: in this cohort the congruence between NOTCH3 mutations and presence of GOM was 100. However, due to the retrospective nature of this study, exact figure for sensitivity cannot be determined, but it would require a prospective study to exclude possible selection bias. The identification of a pathogenic NOTCH3 mutation is an indisputable evidence for CADASIL, but demonstration of GOM provides a cost-effective guide for estimating how far one should proceed with the extensive search for a new or an uncommon mutations among the presently known over 170 different NOTCH3 gene defects. The diagnostic skin biopsy should include the border zone between deep dermis and upper subcutis, where small arterial vessels of correct size are located. Detection of GOM requires technically adequate biopsies and distinction of true GOM from fallacious deposits. If GOM is not found in the first vessel or biopsy, other vessels or additional biopsies should be examined.
  •  
14.
  • Vali, Yasaman, et al. (författare)
  • Biomarkers for staging fibrosis and non-alcoholic steatohepatitis in non-alcoholic fatty liver disease (the LITMUS project) : a comparative diagnostic accuracy study
  • 2023
  • Ingår i: The Lancet Gastroenterology & Hepatology. - : Elsevier Ltd. - 2468-1253. ; 8:8, s. 714-725
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The reference standard for detecting non-alcoholic steatohepatitis (NASH) and staging fibrosis—liver biopsy—is invasive and resource intensive. Non-invasive biomarkers are urgently needed, but few studies have compared these biomarkers in a single cohort. As part of the Liver Investigation: Testing Marker Utility in Steatohepatitis (LITMUS) project, we aimed to evaluate the diagnostic accuracy of 17 biomarkers and multimarker scores in detecting NASH and clinically significant fibrosis in patients with non-alcoholic fatty liver disease (NAFLD) and identify their optimal cutoffs as screening tests in clinical trial recruitment. Methods: This was a comparative diagnostic accuracy study in people with biopsy-confirmed NAFLD from 13 countries across Europe, recruited between Jan 6, 2010, and Dec 29, 2017, from the LITMUS metacohort of the prospective European NAFLD Registry. Adults (aged ≥18 years) with paired liver biopsy and serum samples were eligible; those with excessive alcohol consumption or evidence of other chronic liver diseases were excluded. The diagnostic accuracy of the biomarkers was expressed as the area under the receiver operating characteristic curve (AUC) with liver histology as the reference standard and compared with the Fibrosis-4 index for liver fibrosis (FIB-4) in the same subgroup. Target conditions were the presence of NASH with clinically significant fibrosis (ie, at-risk NASH; NAFLD Activity Score ≥4 and F≥2) or the presence of advanced fibrosis (F≥3), analysed in all participants with complete data. We identified thres holds for each biomarker for reducing the number of biopsy-based screen failures when recruiting people with both NASH and clinically significant fibrosis for future trials. Findings: Of 1430 participants with NAFLD in the LITMUS metacohort with serum samples, 966 (403 women and 563 men) were included after all exclusion criteria had been applied. 335 (35%) of 966 participants had biopsy-confirmed NASH and clinically significant fibrosis and 271 (28%) had advanced fibrosis. For people with NASH and clinically significant fibrosis, no single biomarker or multimarker score significantly reached the predefined AUC 0·80 acceptability threshold (AUCs ranging from 0·61 [95% CI 0·54–0·67] for FibroScan controlled attenuation parameter to 0·81 [0·75–0·86] for SomaSignal), with accuracy mostly similar to FIB-4. Regarding detection of advanced fibrosis, SomaSignal (AUC 0·90 [95% CI 0·86–0·94]), ADAPT (0·85 [0·81–0·89]), and FibroScan liver stiffness measurement (0·83 [0·80–0·86]) reached acceptable accuracy. With 11 of 17 markers, histological screen failure rates could be reduced to 33% in trials if only people who were marker positive had a biopsy for evaluating eligibility. The best screening performance for NASH and clinically significant fibrosis was observed for SomaSignal (number needed to test [NNT] to find one true positive was four [95% CI 4–5]), then ADAPT (six [5–7]), MACK-3 (seven [6–8]), and PRO-C3 (nine [7–11]). Interpretation: None of the single markers or multimarker scores achieved the predefined acceptable AUC for replacing biopsy in detecting people with both NASH and clinically significant fibrosis. However, several biomarkers could be applied in a prescreening strategy in clinical trial recruitment. The performance of promising markers will be further evaluated in the ongoing prospective LITMUS study cohort. Funding: The Innovative Medicines Initiative 2 Joint Undertaking. © 2023 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
  •  
15.
  •  
16.
  • Zhou, You, et al. (författare)
  • Circulating triacylglycerol signatures and insulin sensitivity in NAFLD associated with the E167K variant in TM6SF2
  • 2015
  • Ingår i: Journal of Hepatology. - : Elsevier BV. - 0168-8278 .- 1600-0641. ; 62:3, s. 657-663
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: The Glu167Lys (E167K) variant in the transmembrane 6 superfamily member 2 protein (TM6SF2) was recently shown to influence liver fat (LFAT) content. We aimed at studying how this variant influences circulating triacylglycerol (TAG) signatures and whether it influences hepatic or adipose tissue insulin sensitivity. Methods: We genotyped 300 Finnish subjects for the E167K (rs58542926) variant in TM6SF2 and for the I148M (rs738409) variant in the patatin-like phospholipase domain-containing protein 3 (PNPLA3) in whom LFAT was measured using H-1-MRS and circulating lipids by UPLC-MS. We compared the plasma lipidome between E167K carriers (TM6SF2(EK/KK)) and non-carriers (TM6SF2(EE)), and between three groups of NAFLD: (i) carriers of the E167K but not of the I148M variant in PNPLA3 ('TM6SF2 NAFLD'), (ii) carriers of the I148M but not of the E167K variant ('PNPLA3 NAFLD'), and (iii) non-carriers of either risk allele ('Non-risk NAFLD'). Hepatic and adipose tissue insulin sensitivities were measured using the euglycemic hyperinsulinemic clamp technique combined with infusion of [3-H-3]glucose in 111 subjects. Results: The LFAT content was 34% higher in the TM6SF2(EK/KK) (13.07 +/- 1.57%) than in the TM6SF2(EE) group (9.77 +/- 0.58%, p = 0.013). The effect of insulin on glucose production and lipolysis were significantly higher in the TM6SF2(EK/KK) than in the TM6SF2(EE) group. Comparison of the three NAFLD groups with similar LFATs showed that both the 'TM6SF2 NAFLD' and 'PNPLA3 NAFLD' had significantly lower triglyceride levels and were characterized by lower levels of most common TAGs compared to the 'Non-risk NAFLD' group. Conclusions: We conclude that the E167K variant in TM6SF2 is associated with a distinct subtype of NAFLD, characterized by preserved insulin sensitivity with regard to lipolysis, hepatic glucose production and lack of hypertriglyceridemia despite a clearly increased LFAT content. (C) 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16
Typ av publikation
tidskriftsartikel (16)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Yki-Jarvinen, Hannel ... (16)
Orho-Melander, Marju (7)
Anstee, Quentin M. (7)
Bugianesi, Elisabett ... (7)
Ratziu, Vlad (7)
Ekstedt, Mattias (6)
visa fler...
Aithal, Guruprasad P ... (6)
Tiniakos, Dina (6)
Dufour, Jean-Francoi ... (6)
Francque, Sven (6)
Bedossa, Pierre (5)
Allison, Michael (5)
Petta, Salvatore (5)
Hakkarainen, Antti (5)
Lundbom, Nina (5)
Valenti, Luca (4)
Romero-Gomez, Manuel (4)
Boursier, Jerome (4)
Wonders, Kristy (4)
Cobbold, Jeremy (4)
Holleboom, Adriaan G ... (4)
Rissanen, Aila (3)
Schattenberg, Jorn M ... (3)
Schattenberg, Joern ... (3)
Miele, Luca (3)
Harrison, Stephen (3)
Torstenson, Richard (3)
Yunis, Carla (3)
Cortez-Pinto, Helena (3)
Groop, Leif (2)
Kechagias, Stergios (2)
Westerbacka, Jukka (2)
Daly, Ann K. (2)
Darlay, Rebecca (2)
Cockell, Simon (2)
Meroni, Marica (2)
Govaere, Olivier (2)
Burt, Alastair D. (2)
Palmer, Jeremy (2)
Liu, Yang-Lin (2)
Vacca, Michele (2)
Invernizzi, Pietro (2)
Prati, Daniele (2)
Clement, Karine (2)
Day, Christopher P. (2)
Cordell, Heather J. (2)
Aller, Rocio (2)
Chen, Yu (2)
Karsdal, Morten (2)
Papatheodoridis, Geo ... (2)
visa färre...
Lärosäte
Linköpings universitet (7)
Lunds universitet (7)
Örebro universitet (2)
Karolinska Institutet (2)
Umeå universitet (1)
Uppsala universitet (1)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy