SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yuan XT) "

Sökning: WFRF:(Yuan XT)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Gerstung, M, et al. (författare)
  • The evolutionary history of 2,658 cancers
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 122-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer develops through a process of somatic evolution1,2. Sequencing data from a single biopsy represent a snapshot of this process that can reveal the timing of specific genomic aberrations and the changing influence of mutational processes3. Here, by whole-genome sequencing analysis of 2,658 cancers as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)4, we reconstruct the life history and evolution of mutational processes and driver mutation sequences of 38 types of cancer. Early oncogenesis is characterized by mutations in a constrained set of driver genes, and specific copy number gains, such as trisomy 7 in glioblastoma and isochromosome 17q in medulloblastoma. The mutational spectrum changes significantly throughout tumour evolution in 40% of samples. A nearly fourfold diversification of driver genes and increased genomic instability are features of later stages. Copy number alterations often occur in mitotic crises, and lead to simultaneous gains of chromosomal segments. Timing analyses suggest that driver mutations often precede diagnosis by many years, if not decades. Together, these results determine the evolutionary trajectories of cancer, and highlight opportunities for early cancer detection.
  •  
7.
  • He, YQ, et al. (författare)
  • A polygenic risk score for nasopharyngeal carcinoma shows potential for risk stratification and personalized screening
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 1966-
  • Tidskriftsartikel (refereegranskat)abstract
    • Polygenic risk scores (PRS) have the potential to identify individuals at risk of diseases, optimizing treatment, and predicting survival outcomes. Here, we construct and validate a genome-wide association study (GWAS) derived PRS for nasopharyngeal carcinoma (NPC), using a multi-center study of six populations (6 059 NPC cases and 7 582 controls), and evaluate its utility in a nested case-control study. We show that the PRS enables effective identification of NPC high-risk individuals (AUC = 0.65) and improves the risk prediction with the PRS incremental deciles in each population (Ptrend ranging from 2.79 × 10−7 to 4.79 × 10−44). By incorporating the PRS into EBV-serology-based NPC screening, the test’s positive predictive value (PPV) is increased from an average of 4.84% to 8.38% and 11.91% in the top 10% and 5% PRS, respectively. In summary, the GWAS-derived PRS, together with the EBV test, significantly improves NPC risk stratification and informs personalized screening.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Xing, XL, et al. (författare)
  • Downregulation and Hypermethylation of GABPB1 Is Associated with Aggressive Thyroid Cancer Features
  • 2022
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 14:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Promoter mutations of the telomerase reverse transcriptase (TERT) gene occur frequently in thyroid carcinoma (TC), including papillary (PTC) and anaplastic subtypes (ATC). Given that the ETS family transcription factors GABPA and GABPB1 activate the mutant TERT promoter and induce TERT expression for telomerase activation, GABPB1 has been proposed as a cancer therapeutic target to inhibit telomerase. Here, we sought to determine the role of GABPB1 in TC pathogenesis. In TC-derived cells carrying the mutated TERT promoter, GABPB1 knockdown led to diminished TERT expression but significantly increased invasive potentials in vitro and metastatic potential in a xenograft zebrafish model and altered expression of markers for epithelial-to-mesenchymal transition. GABPB1 expression was downregulated in aggressive TCs. Low GABPB1 expression correlated with its promoter hypermethylation, which in turn was also associated with shorter disease-free survival. Consistently, DNA methylation inhibitors enhanced GABPB1 expression, as observed upon reduced promoter methylation. Our results suggest that GABPB1 is required for TERT expression and telomerase activation, but itself serves as a tumor suppressor to inhibit TC progression. Furthermore, aberrant DNA methylation leads to GABPB1 silencing, thereby promoting TC aggressiveness. Thus, caution is needed if targeting GABPB1 for cancer therapy is considered.
  •  
14.
  • Xing, XL, et al. (författare)
  • PLEKHS1 Over-Expression is Associated with Metastases and Poor Outcomes in Papillary Thyroid Carcinoma
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Pleckstrin homology domain containing S1 (PLEKHS1) is a poorly characterized factor, although its promoter mutations were identified in human malignancies including thyroid carcinoma (TC). This study was designed to determine PLEKHS1 promoter hotspot mutations in papillary and anaplastic thyroid carcinomas (PTCs and ATCs) and to evaluate if PLEKHS1 expression influences clinical outcome. The PLEKHS1 promoter mutation was observed in 1/93 of PTCs and none of 18 ATCs in our cohort; however, PLEKHS1 expression was aberrantly up-regulated in TCs compared to adjacent non-tumorous thyroid tissues. ATC tumors, an undifferentiated TC, exhibited the highest PLEKHS1 expression. In both TCGA and present cohorts of PTCs, PLEKHS1 gene methylation density was inversely correlated with its mRNA expression and demethylation at the PLEKHS1 locus occurred at two CpGs. Higher PLEKHS1 expression was associated with lymph node and distant metastases, and shorter overall and disease-free survival in our cohort of PTC patients. Importantly, PLEKHS1 over-expression predicted shorter patient survival in PTCs lacking TERT promoter mutations. Cellular experiments showed that PLEKHS1 over-expression enhanced AKT phosphorylation and invasiveness. Collectively, the PLEKHS1 gene demethylation causes its over-expression in PTCs. PLEKHS1 promotes aggressive behavior of TCs possibly by increasing AKT activity, and its over-expression predicts poor patient outcomes.
  •  
15.
  •  
16.
  •  
17.
  • Yuan, XT, et al. (författare)
  • Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players
  • 2019
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 1476-5594 .- 0950-9232. ; 38:34, s. 6172-6183
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-lived species Homo sapiens have evolved robust protection mechanisms against cancer by repressing telomerase and maintaining short telomeres, thereby delaying the onset of the majority of cancer types until post-reproductive age. Indeed, telomerase is silent in most differentiated human cells, predominantly due to the transcriptional repression of its catalytic component telomerase reverse transcriptase (TERT) gene. The lack of telomerase/TERT expression leads to progressive telomere erosion in dividing human cells, whereas critically shortened telomere length induces a permanent growth arrest stage named replicative senescence. TERT/telomerase activation has been experimentally shown to be essential to cellular immortalization and malignant transformation by stabilizing telomere length and erasing the senescence barrier. Consistently, TERT expression/telomerase activity is detectable in up to 90% of human primary cancers. Compelling evidence has also accumulated that TERT contributes to cancer development and progression via multiple activities beyond its canonical telomere-lengthening function. Given these key roles of telomerase and TERT in oncogenesis, great efforts have been made to decipher mechanisms underlying telomerase activation and TERT induction. In the last two decades since the TERT gene and promoter were cloned, the derepression of the TERT gene has been shown to be achieved typically at a transcriptional level through dysregulation of oncogenic factors or signaling, post-transcriptional/translational regulation and genomic amplification. However, advances in high-throughput next-generation sequencing technologies have prompted a revolution in cancer genomics, which leads to the recent discovery that genomic alterations take center stage in activating the TERT gene. In this review article, we summarize critical mechanisms activating TERT transcription, with special emphases on the contribution of TERT promoter mutations and structural alterations at the TERT locus, and briefly discuss the underlying implications of these genomic events-driven TERT hyperactivity in cancer initiation/progression and potential clinical applications as well.
  •  
18.
  •  
19.
  • Yuan, XT, et al. (författare)
  • Telomerase Reverse Transcriptase (TERT) in Action: Cross-Talking with Epigenetics
  • 2019
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 20:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Telomerase, an RNA-dependent DNA polymerase with telomerase reverse transcriptase (TERT) as the catalytic component, is silent due to the tight repression of the TERT gene in most normal human somatic cells, whereas activated only in small subsets of cells, including stem cells, activated lymphocytes, and other highly proliferative cells. In contrast, telomerase activation via TERT induction is widespread in human malignant cells, which is a prerequisite for malignant transformation. It is well established that TERT/telomerase extends telomere length, thereby conferring sustained proliferation capacity to both normal and cancerous cells. The recent evidence has also accumulated that TERT/telomerase may participate in the physiological process and oncogenesis independently of its telomere-lengthening function. For instance, TERT is shown to interact with chromatin remodeling factors and to regulate DNA methylation, through which multiple cellular functions are attained. In the present review article, we summarize the non-canonical functions of TERT with a special emphasis on its cross-talk with epigenetics: How TERT contributes to epigenetic alterations in physiological processes and cancer, and how the aberrant epigenetics in turn facilitate TERT expression and function, eventually promoting cancer either initiation or progression or both. Finally, we briefly discuss clinical implications of the TERT-related methylation.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Zhao, Y, et al. (författare)
  • Liver governs adipose remodelling via extracellular vesicles in response to lipid overload
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 719-
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid overload results in lipid redistribution among metabolic organs such as liver, adipose, and muscle; therefore, the interplay between liver and other organs is important to maintain lipid homeostasis. Here, we show that liver responds to lipid overload first and sends hepatocyte-derived extracellular vesicles (EVs) targeting adipocytes to regulate adipogenesis and lipogenesis. Geranylgeranyl diphosphate synthase (Ggpps) expression in liver is enhanced by lipid overload and regulates EV secretion through Rab27A geranylgeranylation. Consistently, liver-specific Ggpps deficient mice have reduced fat adipose deposition. The levels of several EV-derived miRNAs in the plasma of non-alcoholic fatty liver disease (NAFLD) patients are positively correlated with body mass index (BMI), and these miRNAs enhance adipocyte lipid accumulation. Thus, we highlight an inter-organ mechanism whereby the liver senses different metabolic states and sends corresponding signals to remodel adipose tissue to adapt to metabolic changes in response to lipid overload.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy