SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zanetti Marco) "

Sökning: WFRF:(Zanetti Marco)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Abercrombie, Daniel, et al. (författare)
  • Dark Matter benchmark models for early LHC Run-2 Searches : Report of the ATLAS/CMS Dark Matter Forum
  • 2020
  • Ingår i: Physics of the Dark Universe. - : Elsevier BV. - 2212-6864. ; 27
  • Tidskriftsartikel (refereegranskat)abstract
    • This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches. A prioritized, compact set of benchmark models is proposed, accompanied by studies of the parameter space of these models and a repository of generator implementations. This report also addresses how to apply the Effective Field Theory formalism for collider searches and present the results of such interpretations.
  •  
4.
  • Bott, Lukas Thomas, et al. (författare)
  • Coulomb dissociation of O-16 into He-4 and C-12
  • 2023
  • Ingår i: NUCLEAR PHYSICS IN ASTROPHYSICS - X, NPA-X 2022. - : EDP Sciences. - 2100-014X. ; 279
  • Konferensbidrag (refereegranskat)abstract
    • We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4.
  •  
5.
  • Emami Khoonsari, Payam, et al. (författare)
  • Interoperable and scalable data analysis with microservices : Applications in metabolomics
  • 2019
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 35:19, s. 3752-3760
  • Tidskriftsartikel (refereegranskat)abstract
    • MotivationDeveloping a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator.ResultsWe developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis. The environment can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method scales dynamically with increasing availability of computational resources. We demonstrated that the method facilitates interoperability using integration of the major software suites resulting in a turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, statistics and identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science.
  •  
6.
  • Harati, Hadi, et al. (författare)
  • No evidence of a causal association of type 2 diabetes and glucose metabolism with atrial fibrillation
  • 2019
  • Ingår i: Diabetologia. - : SPRINGER. - 0012-186X .- 1432-0428. ; 62:5, s. 800-804
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesisSeveral epidemiological studies have shown an increased risk of atrial fibrillation in individuals with type 2 diabetes or milder forms of dysglycaemia. We aimed to assess whether this relation is causal using a Mendelian randomisation approach.MethodsTwo-sample Mendelian randomisation was used to obtain estimates of the influence of type 2 diabetes, fasting blood glucose (FBG), and HbA(1c) on the risk of atrial fibrillation. Instrumental variables were constructed using available summary statistics from meta-analyses of genome-wide association studies (GWAS) for type 2 diabetes and associated phenotypes. Pleiotropic SNPs were excluded from the analyses. The most recent GWAS meta-analysis summary statistics for atrial fibrillation, which included over 1 million individuals (approximately 60,000 individuals with atrial fibrillation) was used for outcome analysis.ResultsNeither type 2 diabetes (OR 1.01 [95% CI 0.98, 1.03]; p=0.37), nor FBG (OR 0.95 [95% CI 0.82, 1.09] per mmol/l; p=0.49) or HbA(1c) (OR 1.01 [95% CI, 0.85, 1.17] per mmol/mol [%]; p=0.88) were associated with atrial fibrillation in Mendelian randomisation analyses. We had >80% statistical power to detect ORs of 1.08, 1.06 and 1.09 or larger for type 2 diabetes, FBG and HbA(1c), respectively, for associations with atrial fibrillation.Conclusions/interpretationThis Mendelian randomisation analysis does not support a causal role of clinical significance between genetically programmed type 2 diabetes, FBG or HbA(1c) and development of atrial fibrillation. These data suggest that drug treatment to reduce dysglycaemia is unlikely to be an effective strategy for atrial fibrillation prevention.
  •  
7.
  • Nawaz, Muhammad, et al. (författare)
  • Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair
  • 2018
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy