SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zender J.) "

Sökning: WFRF:(Zender J.)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Witasse, O., et al. (författare)
  • Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto : Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:8, s. 7865-7890
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, Mars Atmosphere and Volatile EvolutioN Mission (MAVEN), Mars Odyssey, and Mars Science Laboratory (MSL) missions, 44h before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a nonambiguous signature at New Horizons. A potential detection of this ICME by Voyager 2 at 110-111 AU is also discussed. The multispacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116 degrees, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P, and Saturn.
  •  
4.
  • Orsini, S., et al. (författare)
  • Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission
  • 2022
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury’s southern inner magnetosphere is an unexplored region as it was not observed by earlier space missions. In October 2021, BepiColombo mission has passed through this region during its first Mercury flyby. Here, we describe the observations of SERENA ion sensors nearby and inside Mercury’s magnetosphere. An intermittent high-energy signal, possibly due to an interplanetary magnetic flux rope, has been observed downstream Mercury, together with low energy solar wind. Low energy ions, possibly due to satellite outgassing, were detected outside the magnetosphere. The dayside magnetopause and bow-shock crossing were much closer to the planet than expected, signature of a highly eroded magnetosphere. Different ion populations have been observed inside the magnetosphere, like low latitude boundary layer at magnetopause inbound and partial ring current at dawn close to the planet. These observations are important for understanding the weak magnetosphere behavior so close to the Sun, revealing details never reached before.
  •  
5.
  • Milillo, A., et al. (författare)
  • Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission
  • 2020
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:5
  • Forskningsöversikt (refereegranskat)abstract
    • The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury's environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors.
  •  
6.
  •  
7.
  • Bailey, D. L., et al. (författare)
  • Combined PET/MRI : Global Warming-Summary Report of the 6th International Workshop on PET/MRI, March 27-29, 2017, Tubingen, Germany
  • 2018
  • Ingår i: Molecular Imaging and Biology. - : SPRINGER. - 1536-1632 .- 1860-2002. ; 20:1, s. 4-20
  • Forskningsöversikt (refereegranskat)abstract
    • The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tubingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants critically assessed the current state of PET/MRI, both clinically and as a research tool, and attempted to chart future directions. The meeting addressed the use of PET/MRI and workflows in oncology, neurosciences, infection, inflammation and chronic pain syndromes, as well as deeper discussions about how best to characterise the tumour microenvironment, optimise the complementary information available from PET and MRI, and how advanced data mining and bioinformatics, as well as information from liquid biomarkers (circulating tumour cells and nucleic acids) and pathology, can be integrated to give a more complete characterisation of disease phenotype. Some issues that have dominated previous meetings, such as the accuracy of MR-based attenuation correction (AC) of the PET scan, were finally put to rest as having been adequately addressed for the majority of clinical situations. Likewise, the ability to standardise PET systems for use in multicentre trials was confirmed, thus removing a perceived barrier to larger clinical imaging trials. The meeting openly questioned whether PET/MRI should, in all cases, be used as a whole-body imaging modality or whether in many circumstances it would best be employed to give an in-depth study of previously identified disease in a single organ or region. The meeting concluded that there is still much work to be done in the integration of data from different fields and in developing a common language for all stakeholders involved. In addition, the participants advocated joint training and education for individuals who engage in routine PET/MRI. It was agreed that PET/MRI can enhance our understanding of normal and disrupted biology, and we are in a position to describe the in vivo nature of disease processes, metabolism, evolution of cancer and the monitoring of response to pharmacological interventions and therapies. As such, PET/MRI is a key to advancing medicine and patient care.
  •  
8.
  • Hadid, L. Z., et al. (författare)
  • BepiColombo's Cruise Phase : Unique Opportunity for Synergistic Observations
  • 2021
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media S.A.. - 2296-987X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The investigation of multi-spacecraft coordinated observations during the cruise phase of BepiColombo (ESA/JAXA) are reported, with a particular emphasis on the recently launched missions, Solar Orbiter (ESA/NASA) and Parker Solar Probe (NASA). Despite some payload constraints, many instruments onboard BepiColombo are operating during its cruise phase simultaneously covering a wide range of heliocentric distances (0.28 AU-0.5 AU). Hence, the various spacecraft configurations and the combined in-situ and remote sensing measurements from the different spacecraft, offer unique opportunities for BepiColombo to be part of these unprecedented multipoint synergistic observations and for potential scientific studies in the inner heliosphere, even before its orbit insertion around Mercury in December 2025. The main goal of this report is to present the coordinated observation opportunities during the cruise phase of BepiColombo (excluding the planetary flybys). We summarize the identified science topics, the operational instruments, the method we have used to identify the windows of opportunity and discuss the planning of joint observations in the future.
  •  
9.
  • Zender, J. J., et al. (författare)
  • Segmentation of photospheric magnetic elements corresponding to coronal features to understand the EUV and UV irradiance variability
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The magnetic field plays a dominant role in the solar irradiance variability. Determining the contribution of various magnetic features to this variability is important in the context of heliospheric studies and Sun-Earth connection. Aims. We studied the solar irradiance variability and its association with the underlying magnetic field for a period of five years (January 2011-January 2016). We used observations from the Large Yield Radiometer (LYRA), the Sun Watcher with Active Pixel System detector and Image Processing (SWAP) on board PROBA2, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Methods. The Spatial Possibilistic Clustering Algorithm (SPoCA) is applied to the extreme ultraviolet (EUV) observations obtained from the AIA to segregate coronal features by creating segmentation maps of active regions (ARs), coronal holes (CHs) and the quiet sun (QS). Further, these maps are applied to the full-disk SWAP intensity images and the full-disk (FD) HMI line-of-sight (LOS) magnetograms to isolate the SWAP coronal features and photospheric magnetic counterparts, respectively. We then computed fulldisk and feature-wise averages of EUV intensity and line of sight (LOS) magnetic flux density over ARs/CHs/QS/FD. The variability in these quantities is compared with that of LYRA irradiance values. Results. Variations in the quantities resulting from the segmentation, namely the integrated intensity and the total magnetic flux density of ARs/CHs/QS/FD regions, are compared with the LYRA irradiance variations. We find that the EUV intensity over ARs/CHs/QS/FD is well correlated with the underlying magnetic field. In addition, variations in the full-disk integrated intensity and magnetic flux density values are correlated with the LYRA irradiance variations. Conclusions. Using the segmented coronal features observed in the EUV wavelengths as proxies to isolate the underlying magnetic structures is demonstrated in this study. Sophisticated feature identification and segmentation tools are important in providing more insights into the role of various magnetic features in both the short-and long-term changes in the solar irradiance.
  •  
10.
  • Giono, Gabriel, et al. (författare)
  • Origin of the Solar Rotation Harmonics Seen in the EUV and UV Irradiance
  • 2021
  • Ingår i: Solar Physics. - : Springer Nature. - 0038-0938 .- 1573-093X. ; 296:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term periodicities in the solar irradiance are often observed with periods proportional to the solar rotational period of 27 days. These periods are linked either to some internal mechanism in the Sun or said to be higher harmonics of the rotation without further discussion of their origin. In this article, the origin of the peaks in periodicities seen in the solar extreme ultraviolet (EUV) and ultraviolet (UV) irradiance around the 7, 9, and 14 days periods is discussed. Maps of the active regions and coronal holes are produced from six images per day using the Spatial Possibilistic Clustering Algorithm (SPoCA), a segmentation algorithm. Spectral irradiance at coronal, transition-region/chromospheric, and photospheric levels are extracted for each feature as well as for the full disk by applying the maps to full-disk images (at 19.3, 30.4, and 170 nm sampling in the corona/hot flare plasma, the chromosphere/transition region, and the photosphere, respectively) from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) from January 2011 to December 2018. The peaks in periodicities at 7, 9, and 14 days as well as the solar rotation around 27 days can be seen in almost all of the solar irradiance time series. The segmentation also provided time series of the active regions and coronal holes visible area (i.e. in the area observed in the AIA images, not corrected for the line-of-sight effect with respect to the solar surface), which also show similar peaks in periodicities, indicating that the periodicities are due to the change in area of the features on the solar disk rather than to their absolute irradiance. A simple model was created to reproduce the power spectral density of the area covered by active regions also showing the same peaks in periodicities. Segmentation of solar images allows us to determine that the peaks in periodicities seen in solar EUV/UV irradiance from a few days to a month are due to the change in area of the solar features, in particular, active regions, as they are the main contributors to the total full-disk irradiance variability. The higher harmonics of the solar rotation are caused by the clipping of the area signal as the regions rotate behind the solar limb.
  •  
11.
  • Hawes, N., et al. (författare)
  • Home alone : Autonomous extension and correction of spatial representations
  • 2011
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we present an account of the problems faced by a mobile robot given an incomplete tour of an unknown environment, and introduce a collection of techniques which can generate successful behaviour even in the presence of such problems. Underlying our approach is the principle that an autonomous system must be motivated to act to gather new knowledge, and to validate and correct existing knowledge. This principle is embodied in Dora, a mobile robot which features the aforementioned techniques: shared representations, non-monotonic reasoning, and goal generation and management. To demonstrate how well this collection of techniques work in real-world situations we present a comprehensive analysis of the Dora system's performance over multiple tours in an indoor environment. In this analysis Dora successfully completed 18 of 21 attempted runs, with all but 3 of these successes requiring one or more of the integrated techniques to recover from problems.
  •  
12.
  • Koschny, D, et al. (författare)
  • Scientific planning and commanding of the Rosetta payload
  • 2007
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 128:1-4, s. 167-188
  • Tidskriftsartikel (refereegranskat)abstract
    • ESA’s Rosetta mission was launched in March 2004 and is on its way to comet 67P/Churyumov-Gerasimenko, where it is scheduled to arrive in summer 2014. It comprises a payload of 12 scientific instruments and a Lander. All instruments are provided by Principal Investigators, which are responsible for their operations.As for most ESA science missions, the ground segment of the mission consists of a Mission Operations Centre (MOC) and a Science Operations Centre (SOC). While the MOC is responsible for all spacecraft-related aspects and the final uplink of all command timelines to the spacecraft, the scientific operations of the instruments and the collection of the data and ingestion into the Planetary Science Archive are coordinated by the SOC. This paper focuses on the tasks of the SOC and in particular on the methodology and constraints to convert the scientific goals of the Rosetta mission to operational timelines.
  •  
13.
  • Kruijff, G.-J. M., et al. (författare)
  • Clarification dialogues in human-augmented mapping
  • 2006
  • Ingår i: HRI 2006. - New York, NY, USA : ACM. - 9781595932945 ; , s. 282-289
  • Konferensbidrag (refereegranskat)abstract
    • An approach to dialogue based interaction for resolution of ambiguities encountered as part of Human-Augmented Mapping (HAM) is presented. The paper focuses on issues related to spatial organisation and localisation. The dialogue pattern naturally arises as robots are introduced to novel environments. The paper discusses an approach based on the notion of Questions under Discussion (QUD). The presented approach has been implemented on a mobile platform that has dialogue capabilities and methods for metric SLAM. Experimental results from a pilot study clearly demonstrate that the system can resolve problematic situations.
  •  
14.
  • Kruijff, G.-J. M., et al. (författare)
  • Situated dialogue and spatial organization : What, where... and why?
  • 2007
  • Ingår i: International Journal of Advanced Robotic Systems. - : SAGE Publications. - 1729-8806 .- 1729-8814. ; 4:1, s. 125-138
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper presents an HRI architecture for human-augmented mapping, which has been implemented and tested on an autonomous mobile robotic platform. Through interaction with a human, the robot can augment its autonomously acquired metric map with qualitative information about locations and objects in the environment. The system implements various interaction strategies observed in independently performed Wizard-of-Oz studies. The paper discusses an ontology-based approach to multi-layered conceptual spatial mapping that provides a common ground for human-robot dialogue. This is achieved by combining acquired knowledge with innate conceptual commonsense knowledge in order to infer new knowledge. The architecture bridges the gap between the rich semantic representations of the meaning expressed by verbal utterances on the one hand and the robot's internal sensor-based world representation on the other. It is thus possible to establish references to spatial areas in a situated dialogue between a human and a robot about their environment. The resulting conceptual descriptions represent qualitative knowledge about locations in the environment that can serve as a basis for achieving a notion of situational awareness.
  •  
15.
  • Kruijff, G.-J., et al. (författare)
  • Situated dialogue and understanding spatial organization : Knowing what is where and what you can do there
  • 2006
  • Ingår i: Proceedings - IEEE International Workshop on Robot and Human Interactive Communication. - 9781424405657 ; , s. 328-333
  • Konferensbidrag (refereegranskat)abstract
    • The paper presents an HRI architecture for human-augmented mapping. Through interaction with a human, the robot can augment its autonomously learnt metric map with qualitative information about locations and objects in the environment. The system implements various interaction strategies observed in independent Wizard-of-Oz studies. The paper discusses an ontology-based approach to representing and inferring 2.5D spatial organization, and presents how knowledge of spatial organization can be acquired autonomously or through spoken dialogue interaction.
  •  
16.
  • Sánchez-Cano, Beatriz, et al. (författare)
  • Solar Energetic Particle Events Detected in the Housekeeping Data of the European Space Agency's Spacecraft Flotilla in the Solar System
  • 2023
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 21:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the growing importance of planetary Space Weather forecasting and radiation protection for science and robotic exploration and the need for accurate Space Weather monitoring and predictions, only a limited number of spacecraft have dedicated instrumentation for this purpose. However, every spacecraft (planetary or astronomical) has hundreds of housekeeping sensors distributed across the spacecraft, some of which can be useful to detect radiation hazards produced by solar particle events. In particular, energetic particles that impact detectors and subsystems on a spacecraft can be identified by certain housekeeping sensors, such as the Error Detection and Correction (EDAC) memory counters, and their effects can be assessed. These counters typically have a sudden large increase in a short time in their error counts that generally match the arrival of energetic particles to the spacecraft. We investigate these engineering datasets for scientific purposes and perform a feasibility study of solar energetic particle event detections using EDAC counters from seven European Space Agency Solar System missions: Venus Express, Mars Express, ExoMars-Trace Gas Orbiter, Rosetta, BepiColombo, Solar Orbiter, and Gaia. Six cases studies, in which the same event was observed by different missions at different locations in the inner Solar System are analyzed. The results of this study show how engineering sensors, for example, EDAC counters, can be used to infer information about the solar particle environment at each spacecraft location. Therefore, we demonstrate the potential of the various EDAC to provide a network of solar particle detections at locations where no scientific observations of this kind are available.
  •  
17.
  • Zender, H., et al. (författare)
  • An integrated robotic system for spatial understanding and situated interaction in indoor environments
  • 2007
  • Ingår i: AAAI-07/IAAI-07 Proceedings. - 1577353234 - 9781577353232 ; , s. 1584-1589
  • Konferensbidrag (refereegranskat)abstract
    • A major challenge in robotics and artificial intelligence lies in creating robots that are to cooperate with people in human-populated environments, e.g. for domestic assistance or elderly care. Such robots need skills that allow them to interact with the world and the humans living and working therein. In this paper we investigate the question of spatial understanding of human-made environments. The functionalities of our system comprise perception of the world, natural language, learning, and reasoning. For this purpose we integrate state-of-the-art components from different disciplines in AI, robotics and cognitive systems into a mobile robot system. The work focuses on the description of the principles we used for the integration, including cross-modal integration, ontology-based mediation, and multiple levels of abstraction of perception. Finally, we present experiments with the integrated “CoSy Explorer ” 1 system and list some of the major lessons that were learned from its design, implementation, and evaluation.
  •  
18.
  • Zender, H., et al. (författare)
  • Conceptual spatial representations for indoor mobile robots
  • 2008
  • Ingår i: Robotics and Autonomous Systems. - : Elsevier BV. - 0921-8890 .- 1872-793X. ; 56:6, s. 493-502
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following different findings in spatial cognition, our model is composed of layers representing maps at different levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporates a linguistic framework that actively supports the map acquisition process, and which is used for situated dialogue. Finally, we discuss the capabilities of the integrated system.
  •  
19.
  • Zender, H., et al. (författare)
  • Human- and Situation-Aware People Following
  • 2007
  • Ingår i: 2007 RO-MAN. - 9781424416349 ; , s. 1124-1129
  • Konferensbidrag (refereegranskat)abstract
    • The paper presents an approach to intelligent, interactive people following for autonomous robots. The approach combines robust methods for simultaneous localization and mapping and for people tracking in order to yield a socially and environmentally sensitive people following behavior. Unlike current purely reactive approaches ("nearest point following") it enables the robot to follow a human in a socially acceptable way, providing verbal and non-verbal feedback to the user where necessary. At the same time, the robot makes use of information about the spatial and functional organization of its environment, so that it can anticipate likely actions performed by a human, and adjust its motion accordingly. As a result, the robot's behaviors become less reactive and more intuitive when following people around an indoor environment. The approach has been fully implemented and tested.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy