SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhao Lingling) "

Sökning: WFRF:(Zhao Lingling)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Fraternale, Federico, et al. (författare)
  • Exploring turbulence from the Sun to the local interstellar medium : Current challenges and perspectives for future space missions
  • 2022
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media S.A.. - 2296-987X. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • Turbulence is ubiquitous in space plasmas. It is one of the most important subjects in heliospheric physics, as it plays a fundamental role in the solar wind-local interstellar medium interaction and in controlling energetic particle transport and acceleration processes. Understanding the properties of turbulence in various regions of the heliosphere with vastly different conditions can lead to answers to many unsolved questions opened up by observations of the magnetic field, plasma, pickup ions, energetic particles, radio and UV emissions, and so on. Several space missions have helped us gain preliminary knowledge on turbulence in the outer heliosphere and the very local interstellar medium. Among the past few missions, the Voyagers have paved the way for such investigations. This paper summarizes the open challenges and voices our support for the development of future missions dedicated to the study of turbulence throughout the heliosphere and beyond.
  •  
3.
  • Li, Qian, et al. (författare)
  • Multiple biomarker responses in caged benthic gastropods Bellamya aeruginosa after in situ exposure to Taihu Lake in China
  • 2018
  • Ingår i: Environmental Sciences Europe. - : Springer Science and Business Media LLC. - 2190-4707 .- 2190-4715. ; 30
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Freshwater sediments have been recognized as a long-term sink and potential source for environmental pollutants released into the aquatic ecosystems. In this study, the sediment quality of Taihu Lake, which is susceptible to anthropogenic contamination, was assessed by a combination of chemical analytical and biological end points. Specifically, the snail Bellamya aeruginosa was caged in situ at two locations representing different pollution levels for different exposure times (7, 14 and 21 days). At each of these time points, biochemical parameters, i.e., phase I biotransformation enzymes ethoxyresorufin-O-deethylase (EROD), the antioxidant enzymes superoxide dismutase and catalase, reactive oxygen species, protein carbonyl content and lipid peroxidation, were evaluated in the hepato-pancreas of snails. In addition, surface sediments were collected for analysis of contaminants of concern, including inorganic pollutants, organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers.Results: Chemical analyses revealed that sediments from Taihu Lake were contaminated with trace elements and organic pollutants. Concentrations of trace elements (Cu, Ni and As) and organochlorinated pesticides (4,4'-DDE) exceeded their corresponding threshold effect level according to the sediment quality assessment values for freshwater ecosystems in Canada, indicating that adverse biological effects may occur. All biomarkers, except EROD activity, were induced in snails during all exposure times. The integrated biomarker response index (IBR) indicated that during the initial exposure phase (7 days), B. aeruginosa were subjected to significant environmental stress, which diminished during later sampling time points.Conclusions: Results showed that IBR correlated well with the levels of environmental contaminants, demonstrating the applicability of this biomonitoring approach to complex environmental exposure scenarios.
  •  
4.
  • Telloni, Daniele, et al. (författare)
  • Does Turbulence along the Coronal Current Sheet Drive Ion Cyclotron Waves?
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence for the presence of ion cyclotron waves (ICWs), driven by turbulence, at the boundaries of the current sheet is reported in this paper. By exploiting the full potential of the joint observations performed by Parker Solar Probe and the Metis coronagraph on board Solar Orbiter, local measurements of the solar wind can be linked with the large-scale structures of the solar corona. The results suggest that the dynamics of the current sheet layers generates turbulence, which in turn creates a sufficiently strong temperature anisotropy to make the solar-wind plasma unstable to anisotropy-driven instabilities such as the Alfven ion cyclotron, mirror-mode, and firehose instabilities. The study of the polarization state of high-frequency magnetic fluctuations reveals that ICWs are indeed present along the current sheet, thus linking the magnetic topology of the remotely imaged coronal source regions with the wave bursts observed in situ. The present results may allow improvement of state-of-the-art models based on the ion cyclotron mechanism, providing new insights into the processes involved in coronal heating.
  •  
5.
  • Telloni, Daniele, et al. (författare)
  • Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe-Solar Orbiter Radial Alignment
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 912:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The first radial alignment between Parker Solar Probe and Solar Orbiter spacecraft is used to investigate the evolution of solar wind turbulence in the inner heliosphere. Assuming ballistic propagation, two 1.5 hr intervals are tentatively identified as providing measurements of the same plasma parcels traveling from 0.1 to 1 au. Using magnetic field measurements from both spacecraft, the properties of turbulence in the two intervals are assessed. Magnetic spectral density, flatness, and high-order moment scaling laws are calculated. The Hilbert-Huang transform is additionally used to mitigate short sample and poor stationarity effects. Results show that the plasma evolves from a highly Alfvenic, less-developed turbulence state near the Sun, to fully developed and intermittent turbulence at 1 au. These observations provide strong evidence for the radial evolution of solar wind turbulence.
  •  
6.
  • Telloni, Daniele, et al. (författare)
  • Linking Small-scale Solar Wind Properties with Large-scale Coronal Source Regions through Joint Parker Solar Probe-Metis/Solar Orbiter Observations
  • 2022
  • Ingår i: Astrophysical Journal. - : IOP Publishing Ltd. - 0004-637X .- 1538-4357. ; 935:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The solar wind measured in situ by Parker Solar Probe in the very inner heliosphere is studied in combination with the remote-sensing observation of the coronal source region provided by the METIS coronagraph aboard Solar Orbiter. The coronal outflows observed near the ecliptic by Metis on 2021 January 17 at 16:30 UT, between 3.5 and 6.3 R (circle dot) above the eastern solar limb, can be associated with the streams sampled by PSP at 0.11 and 0.26 au from the Sun, in two time intervals almost 5 days apart. The two plasma flows come from two distinct source regions, characterized by different magnetic field polarity and intensity at the coronal base. It follows that both the global and local properties of the two streams are different. Specifically, the solar wind emanating from the stronger magnetic field region has a lower bulk flux density, as expected, and is in a state of well-developed Alfvenic turbulence, with low intermittency. This is interpreted in terms of slab turbulence in the context of nearly incompressible magnetohydrodynamics. Conversely, the highly intermittent and poorly developed turbulent behavior of the solar wind from the weaker magnetic field region is presumably due to large magnetic deflections most likely attributed to the presence of switchbacks of interchange reconnection origin.
  •  
7.
  • Telloni, Daniele, et al. (författare)
  • Observation and Modeling of the Solar Wind Turbulence Evolution in the Sub-Mercury Inner Heliosphere
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 938:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This letter exploits the radial alignment between the Parker Solar Probe and BepiColombo in late 2022 February, when both spacecraft were within Mercury's orbit. This allows the study of the turbulent evolution, namely, the change in spectral and intermittency properties, of the same plasma parcel during its expansion from 0.11 to 0.33 au, a still unexplored region. The observational analysis of the solar wind turbulent features at the two different evolution stages is complemented by a theoretical description based on the turbulence transport model equations for nearly incompressible magnetohydrodynamics. The results provide strong evidence that the solar wind turbulence already undergoes significant evolution at distances less than 0.3 au from the Sun, which can be satisfactorily explained as due to evolving slab fluctuations. This work represents a step forward in understanding the processes that control the transition from weak to strong turbulence in the solar wind and in properly modeling the heliosphere.
  •  
8.
  • Telloni, Daniele, et al. (författare)
  • Observation of a Magnetic Switchback in the Solar Corona
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 936:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Switchbacks are sudden, large radial deflections of the solar wind magnetic field, widely revealed in interplanetary space by the Parker Solar Probe. The switchbacks' formation mechanism and sources are still unresolved, although candidate mechanisms include Alfvenic turbulence, shear-driven Kelvin-Helmholtz instabilities, interchange reconnection, and geometrical effects related to the Parker spiral. This Letter presents observations from the Metis coronagraph on board a Solar Orbiter of a single large propagating S-shaped vortex, interpreted as the first evidence of a switchback in the solar corona. It originated above an active region with the related loop system bounded by open-field regions to the east and west. Observations, modeling, and theory provide strong arguments in favor of the interchange reconnection origin of switchbacks. Metis measurements suggest that the initiation of the switchback may also be an indicator of the origin of slow solar wind.
  •  
9.
  • Telloni, Daniele, et al. (författare)
  • Possible Evidence for Shear-driven Kelvin-Helmholtz Instability along the Boundary of Fast and Slow Solar Wind in the Corona
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 929:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports the first possible evidence for the development of the Kelvin-Helmholtz (KH) instability at the border of coronal holes separating the associated fast wind from the slower wind originating from adjacent streamer regions. Based on a statistical data set of spectroscopic measurements of the UV corona acquired with the UltraViolet Coronagraph Spectrometer on board the SOlar and Heliospheric Observatory during the minimum activity of solar cycle 22, high temperature-velocity correlations are found along the fast/slow solar wind interface region and interpreted as manifestations of KH vortices formed by the roll-up of the shear flow, whose dissipation could lead to higher heating and, because of that, higher velocities. These observational results are supported by solving coupled solar wind and turbulence transport equations including a KH-driven source of turbulence along the tangential velocity discontinuity between faster and slower coronal flows: numerical analysis indicates that the correlation between the solar wind speed and temperature is large in the presence of the shear source of turbulence. These findings suggest that the KH instability may play an important role both in the plasma dynamics and in the energy deposition at the boundaries of coronal holes and equatorial streamers.
  •  
10.
  • Trotta, Domenico, et al. (författare)
  • Properties of an Interplanetary Shock Observed at 0.07 and 0.7 au by Parker Solar Probe and Solar Orbiter
  • 2024
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 962:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions opened a new observational window in the inner heliosphere, which is finally accessible to direct measurements. On 2022 September 5, a coronal mass ejection (CME)-driven interplanetary (IP) shock was observed as close as 0.07 au by PSP. The CME then reached SolO, which was radially well-aligned at 0.7 au, thus providing us with the opportunity to study the shock properties at different heliocentric distances. We characterize the shock, investigate its typical parameters, and compare its small-scale features at both locations. Using the PSP observations, we investigate how magnetic switchbacks and ion cyclotron waves are processed upon shock crossing. We find that switchbacks preserve their V-B correlation while compressed upon the shock passage, and that the signature of ion cyclotron waves disappears downstream of the shock. By contrast, the SolO observations reveal a very structured shock transition, with a population of shock-accelerated protons of up to about 2 MeV, showing irregularities in the shock downstream, which we correlate with solar wind structures propagating across the shock. At SolO, we also report the presence of low-energy (similar to 100 eV) electrons scattering due to upstream shocklets. This study elucidates how the local features of IP shocks and their environments can be very different as they propagate through the heliosphere.
  •  
11.
  • Wang, Xiaoyu, et al. (författare)
  • Guest Editorial: Modeling and Simulation Methods for Analysis and Design of Advanced Energy Conversion Systems
  • 2020
  • Ingår i: IEEE Transactions on Energy Conversion. - 1558-0059 .- 0885-8969. ; 35:1, s. 309-311
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The papers in this special section examine modeling and simulation methods for the analysis and design of advanced energy conversion systems. Energy conversion lies aEnergyveral fronts including materials, conversion methods, power electronics, and controls have created new opportunities for efficient energy conversion from both the conventional and new sources of energy. Our urgent need to solve many critical problems with regards to the sustainability and security of our energy system as well as the ever-increasing environmental challenges facing humanity have further spurred unprecedented opportunities for creation of innovative solutions to address these challenges.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy