SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhou XL) "

Sökning: WFRF:(Zhou XL)

  • Resultat 1-25 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Callaway, EM, et al. (författare)
  • A multimodal cell census and atlas of the mammalian primary motor cortex
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 598:7879, s. 86-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input–output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1–5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
  •  
10.
  •  
11.
  •  
12.
  • Li, WM, et al. (författare)
  • Plasma metabolomics and lipidomics signatures of motoric cognitive risk syndrome in community-dwelling older adults
  • 2022
  • Ingår i: Frontiers in aging neuroscience. - : Frontiers Media SA. - 1663-4365. ; 14, s. 977191-
  • Tidskriftsartikel (refereegranskat)abstract
    • Motoric cognitive risk syndrome (MCR) is characterized by subjective cognitive complaints (SCCs) and slow gait (SG). Metabolomics and lipidomics may potentiate disclosure of the underlying mechanisms of MCR.MethodsThis was a cross-sectional study from the West China Health and Aging Trend cohort study (WCHAT). The operational definition of MCR is the presence of SCCs and SG without dementia or mobility disability. The test and analysis were based on untargeted metabolomics and lipidomics, consensus clustering, lasso regression and 10-fold cross-validation.ResultsThis study enrolled 6,031 individuals for clinical analysis and 577 plasma samples for omics analysis. The overall prevalence of MCR was 9.7%, and the prevalence of MCR-only, assessed cognitive impairment-only (CI-only) and MCR-CI were 7.5, 13.3, and 2.1%, respectively. By consensus clustering analysis, MCR-only was clustered into three metabolic subtypes, MCR-I, MCR-II and MCR-III. Clinically, body fat mass (OR = 0.89, CI = 0.82–0.96) was negatively correlated with MCR-I, and comorbidity (OR = 2.19, CI = 1.10–4.38) was positively correlated with MCR-III. Diabetes mellitus had the highest ORs above 1 in MCR-II and MCR-III (OR = 3.18, CI = 1.02–9.91; OR = 2.83, CI = 1.33–6.04, respectively). The risk metabolites of MCR-III showed relatively high similarity with those of cognitive impairment. Notably, L-proline, L-cystine, ADMA, and N1-acetylspermidine were significantly changed in MCR-only, and PC(40:3), SM(32:1), TG(51:3), eicosanoic acid(20:1), methyl-D-galactoside and TG(50:3) contributed most to the prediction model for MCR-III.InterpretationPre-dementia syndrome of MCR has distinct metabolic subtypes, and SCCs and SG may cause different metabolic changes to develop MCR.
  •  
13.
  • Li, XL, et al. (författare)
  • Endoplasmic reticulum stress inhibits AR expression via the PERK/eIF2α/ATF4 pathway in luminal androgen receptor triple-negative breast cancer and prostate cancer
  • 2022
  • Ingår i: NPJ breast cancer. - : Springer Science and Business Media LLC. - 2374-4677. ; 8:1, s. 2-
  • Tidskriftsartikel (refereegranskat)abstract
    • Androgen receptor (AR) is an important prognostic marker and therapeutic target in luminal androgen receptor triple-negative breast cancer (LAR TNBC) and prostate cancer (PCa). Endoplasmic reticulum (ER) stress may activate the unfolded protein response (UPR) to regulate associated protein expression and is closely related to tumor growth and drug resistance. The effect of ER stress on AR expression and signaling remains unclear. Here, we focused on the regulation and underlying mechanism of AR expression induced by ER stress in LAR TNBC and PCa. Western blotting and quantitative RT-PCR results showed that AR expression was markedly decreased under ER stress induced by thapsigargin and brefeldin A, and this effect was dependent on PERK/eIF2α/ATF4 signaling activation. Chromatin immunoprecipitation-PCR and luciferase reporter gene analysis results showed that ATF4 bound to the AR promoter regions to inhibit its activity. Moreover, ATF4 overexpression inhibited tumor proliferation and AR expression both in vitro and in vivo. Collectively, these results demonstrated that ER stress could decrease AR mRNA and protein levels via PERK/eIF2α/ATF4 signaling in LAR TNBC and PCa. Targeting the UPR may be a treatment strategy for AR-dependent TNBC and PCa.
  •  
14.
  •  
15.
  • Mishra, A, et al. (författare)
  • Diminishing benefits of urban living for children and adolescents' growth and development
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 615:7954, s. 874-883
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Tabassum, R, et al. (författare)
  • Genetic architecture of human plasma lipidome and its link to cardiovascular disease
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4329-
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD.
  •  
22.
  •  
23.
  • Zhou, X, et al. (författare)
  • Alcohol consumption, blood DNA methylation and breast cancer: a Mendelian randomisation study
  • 2022
  • Ingår i: European journal of epidemiology. - : Springer Science and Business Media LLC. - 1573-7284 .- 0393-2990. ; 37:7, s. 701-712
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol intake is thought to be a risk factor for breast cancer, but the causal relationship and carcinogenic mechanisms are not clear. We performed an up-to-date meta-analysis of prospective studies to assess observational association, and then conducted MR analysis to make causal inference based on the genetic predisposition to alcohol consumption (“drinks per week”) and pathological drinking behaviours (“alcohol use disorder” and “problematic alcohol use”), as well as genetically predicted DNA methylation at by alcohol-related CpG sites in blood. We found an observational dose–response association between alcohol intake and breast cancer incidence with an additional risk of 4% for per 10 g/day increase in alcohol consumption. Genetic predisposition to alcohol consumption (“drinks per week”) was not causally associated with breast cancer incidence at the OR of 1.01 (95% CI 0.84, 1.23), but problematic alcohol use (PAU) was linked to a higher breast cancer risk at the OR of 1.76 (95% CI 1.04, 2.99) when conditioning on alcohol consumption. Epigenetic MR analysis identified four CpG sites, cg03260624 near CDC7 gene, cg10816169 near ZNF318 gene, cg03345232 near RIN3 gene, and cg26312998 near RP11-867G23.13 gene, where genetically predicted epigenetic modifications were associated with an increased breast cancer incidence risk. Our findings re-affirmed that alcohol consumption is of high risk for breast cancer incidence even at a very low dose, and the pathogenic effect of alcohol on breast cancer could be due to pathological drinking behaviour and epigenetic modification at several CpG sites, which could be potential intervention targets for breast cancer prevention.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 62

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy