SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhou Yushun) "

Sökning: WFRF:(Zhou Yushun)

  • Resultat 1-25 av 104
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aslanyan, V, et al. (författare)
  • Gyrokinetic simulations of toroidal Alfven eigenmodes excited by energetic ions and external antennas on the Joint European Torus
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 59:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The gyrokinetic toroidal code (GTC) has been used to study toroidal Alfven eigenmodes (TAEs) in high-performance plasmas. Experiments performed at the Joint European Torus (JET), where TAEs were driven by energetic particles arising from neutral beams, ion cyclotron resonant heating, and resonantly excited by dedicated external antennas, have been simulated. Modes driven by populations of energetic particles are observed, matching the TAE frequency seen with magnetic probes in JET experiments. A synthetic antenna, composed of one toroidal and two neighboring poloidal harmonics has been used to probe the modes' damping rates and quantify mechanisms for this damping in GTC simulations. This method was also applied to frequency and damping rate measurements of stable TAEs made by the Alfven eigenmode active diagnostic in these discharges.
  •  
3.
  • Baron-Wiechec, A., et al. (författare)
  • Thermal desorption spectrometry of beryllium plasma facing tiles exposed in the JET tokamak
  • 2018
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 133, s. 135-141
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenomena of retention and de-trapping of deuterium (D) and tritium (T) in plasma facing components (PFC) and supporting structures must be understood in order to limit or control total T inventory in larger future fusion devices such as ITER, DEMO and commercial machines. The goal of this paper is to present details of the thermal desorption spectrometry (TDS) system applied in total fuel retention assessment of PFC at the Joint European Torus (JET). Examples of TDS results from beryllium (Be) wall tile samples exposed to JET plasma in PFC configuration mirroring the planned ITER PFC is shown for the first time. The method for quantifying D by comparison of results from a sample of known D content was confirmed acceptable. The D inventory calculations obtained from Ion Beam Analysis (IBA) and TDS agree well within an error associated with the extrapolation from very few data points to a large surface area.
  •  
4.
  • Basiuk, V., et al. (författare)
  • Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth : effects on transport coefficients
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.
  •  
5.
  • Batistoni, P., et al. (författare)
  • 14 MeV calibration of JET neutron detectors-phase 2 : in-vessel calibration
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:10
  • Tidskriftsartikel (refereegranskat)abstract
    • A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay gamma-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the U-235 fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified. MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with +/- 4.2%' experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally <= +/- 3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the Nb-93(n,2n)Nb-92m and Al-27(n,a)Na-24 activation reactions (energy thresholds 10 MeV and 5 MeV respectively). The total uncertainty on the calibration factors is +/- 6% for Nb-93(n,2n)Nb-92m and +/- 8% Al-27(n,a)Na-24 (1 sigma). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.
  •  
6.
  • Batistoni, Paola, et al. (författare)
  • Calibration of neutron detectors on the Joint European Torus
  • 2017
  • Ingår i: Review of Scientific Instruments. - : AMER INST PHYSICS. - 0034-6748 .- 1089-7623. ; 88:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a Cf-252 source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) Cf-252 source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.
  •  
7.
  • Batistoni, P., et al. (författare)
  • Overview of neutron measurements in jet fusion device
  • 2018
  • Ingår i: Radiation Protection Dosimetry. - : OXFORD UNIV PRESS. - 0144-8420 .- 1742-3406. ; 180:1-4, s. 102-108
  • Tidskriftsartikel (refereegranskat)abstract
    • The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation.
  •  
8.
  • Bergsåker, Henric, et al. (författare)
  • Assessment of the strength of kinetic effects of parallel electron transport in the SOL and divertor of JET high radiative H-mode plasmas using EDGE2D-EIRENE and KIPP codes
  • 2018
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 60:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinetic code for plasma periphery (KIPP) was used to assess the importance of the kinetic effects of parallel electron transport in the scrape-off layer (SOL) and divertor of JET high radiative H-mode inter-ELM plasma conditions with the ITER-like wall and strong nitrogen (N-2) injection. Plasma parameter profiles along a magnetic field from one of the EDGE2D-EIRENE simulation cases were used as an input for KIPP runs. Profiles were maintained by particle and power sources. KIPP generated electron distribution functions, f(e), parallel power fluxes, electron-ion thermoforces, Debye sheath potential drops and electron sheath transmission factors at divertor targets. For heat fluxes in the main SOL, KIPP results showed deviations from classical (e.g. Braginskii) fluxes by factors typically of similar to 1.5, sometimes up to 2, with the flux limiting for more upstream positions and flux enhancement near entrances to the divertor. In the divertor, at the same time, for radial positions closer to the separatrix, very large heat flux enhancement factors of up to ten or even higher, indicative of a strong nonlocal heat transport, were found at the outer target, with heat power flux density exhibiting bump-on-tail features at high energies. Under such extreme conditions, however, contributions of conductive power fluxes to total power fluxes were strongly reduced, with convective power fluxes becoming comparable, or sometimes exceeding, conductive power fluxes. Electron-ion thermoforce, on the other hand, which is known to be determined mostly by thermal and subthermal electrons, was found to be in good agreement with Braginskii formulas, including the Z(eff) dependence. Overall, KIPP results indicate, at least for the plasma conditions used in this modelling, a sizable, but not dominant, effect of kinetics on parallel electron transport.
  •  
9.
  • Bobkov, V., et al. (författare)
  • Progress in reducing ICRF-specific impurity release in ASDEX upgrade and JET
  • 2017
  • Ingår i: Nuclear Materials and Energy. - : ELSEVIER. - 2352-1791. ; 12, s. 1194-1198
  • Tidskriftsartikel (refereegranskat)abstract
    • Use of new 3-strap ICRF antennas with all-tungsten (W) limiters in ASDEX Upgrade results in a reduction of the W sources at the antenna limiters and of the W content in the confined plasma by at least a factor of 2 compared to the W-limiter 2-strap antennas used in the past. The reduction is observed with a broad range of plasma shapes. In multiple locations of antenna frame, the limiter W source has a minimum when RF image currents are decreased by cancellation of the RF current contributions of the central and the outer straps. In JET with ITER-like wall, ITER-like antenna produces about 20% less of main chamber radiation and of W content compared to the old A2 antennas. However the effect of the A2 antennas on W content is scattered depending on which antennas are powered. Experiments in JET with trace nitrogen (N-2) injection show that a presence of active ICRF antenna close to the midplane injection valve has little effect on the core N content, both in dipole and in -90 degrees phasing. This indicates that the effect of ICRF on impurity transport across the scape-off-layer is small in JET compared to the dominant effect on impurity sources leading to increased impurity levels during ICRF operation.
  •  
10.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
11.
  •  
12.
  • Bonanomi, N., et al. (författare)
  • Impact of electron-scale turbulence and multi-scale interactions in the JET tokamak
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental observations in JET tokamak plasmas and gyrokinetic simulations point to an important role, for electron heat transport, of electron-scale instabilities and of their interaction with ion-scale instabilities. Since these effects are maximized for strong electron heating and ion-scale modes close to marginal stability, these findings are of high relevance for ITER plasmas, featuring both conditions. Gyrokinetic and quasi-linear transport models accounting for multi-scale effects are assessed against JET experimental results.
  •  
13.
  •  
14.
  • Bonelli, F., et al. (författare)
  • Self-consistent coupling of DSMC method and SOLPS code for modeling tokamak particle exhaust
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, an investigation of the neutral gas flow in the JET sub-divertor area is presented, with respect to the interaction between the plasma side and the pumping side. The edge plasma side is simulated with the SOLPS code, while the sub-divertor area is modeled by means of the direct simulation Monte Carlo (DSMC) method, which in the last few years has proved well able to describe rarefied, collisional flows in tokamak sub-divertor structures. Four different plasma scenarios have been selected, and for each of them a user-defined, iterative procedure between SOLPS and DSMC has been established, using the neutral flux as the key communication term between the two codes. The goal is to understand and quantify the mutual influence between the two regions in a self-consistent manner, that is to say, how the particle exhaust pumping system controls the upstream plasma conditions. Parametric studies of the flow conditions in the sub-divertor, including additional flow outlets and variations of the cryopump capture coefficient, have been performed as well, in order to understand their overall impact on the flow field. The DSMC analyses resulted in the calculation of both the macroscopic quantities-i.e. temperature, number density and pressure-and the recirculation fluxes towards the plasma chamber. The consistent values for the recirculation rates were found to be smaller than those according to the initial standard assumption made by SOLPS.
  •  
15.
  • Bourdelle, C., et al. (författare)
  • Fast H isotope and impurity mixing in ion-temperature-gradient turbulence
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:7
  • Tidskriftsartikel (refereegranskat)abstract
    • In ion-temperature-gradient (ITG) driven turbulence, the resonance condition leads to ion particle turbulent transport coefficients significantly larger than electron particle turbulent transport coefficients. This is shown in nonlinear gyrokinetic simulations and explained by an analytical quasilinear model. It is then illustrated by JETTO-QuaLiKiz integrated modelling. Large ion particle transport coefficients implies that the ion density profiles are uncorrelated to the corresponding ion source, allowing peaked isotope density profiles even in the absence of core source. This also implies no strong core accumulation of He ash. Furthermore, the relaxation time of the individual ion profiles in a multi-species plasma can be significantly faster than the total density profile relaxation time which is constrained by the electrons. This leads to fast isotope mixing and fast impurity transport in FM regimes. In trapped-electron- mode (TEM) turbulence, in presence of electron heating about twice the ion heating, the situation is the inverse: ion particle turbulent transport coefficients are smaller than their electron counterpart.
  •  
16.
  • Breton, S., et al. (författare)
  • First principle integrated modeling of multi-channel transport including Tungsten in JET
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:9
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time, over five confinement times, the self-consistent flux driven time evolution of heat, momentum transport and particle fluxes of electrons and multiple ions including Tungsten (W) is modeled within the integrated modeling platform JFTTO (Romanelli et al 2014 Plasma Fusion Res. 9 1-4), using first principle-based codes: namely, QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036) for turbulent transport and NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 95010) for neoclassical transport. For a JET-ILW pulse, the evolution of measured temperatures, rotation and density profiles are successfully predicted and the observed W central core accumulation is obtained. The poloidal asymmetries of the W density modifying its neoclassical and turbulent transport are accounted for. Actuators of the W core accumulation are studied: removing the central particle source annihilates the central W accumulation whereas the suppression of the torque reduces significantly the W central accumulation. Finally, the presence of W slightly reduces main ion heat turbulent transport through complex nonlinear interplays involving radiation, effective charge impact on ITG and collisionality.
  •  
17.
  • Breton, S., et al. (författare)
  • High Z neoclassical transport : Application and limitation of analytical formulae for modelling JET experimental parameters
  • 2018
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schluter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature screening reduction due to poloidal asymmetries would need to be better characterised for this faster model to be extended to a more general applicability.
  •  
18.
  • Calabro, G., et al. (författare)
  • Divertor currents optimization procedure for JET-ILW high flux expansion experiments
  • 2018
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 129, s. 115-119
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper deals with a divertor coil currents optimized procedure to design High Flux Expansion (HFE) configurations in the JET tokamak aimed to study the effects of flux expansion variation on the radiation fraction and radiated power re-distribution. A number of benefits of HFE configuration have been experimentally demonstrated on TCV, EAST, NSTX and DIII-D tokamaks and are under investigation for next generation devices, as DEMO and DTT. The procedure proposed here exploits the linearized relation between the plasma-wall gaps and the Poloidal Field (PF) coil currents. Once the linearized model is provided by means of CREATE-NL code, the divertor coils currents are calculated using a constrained quadratic programming optimization procedure, in order to achieve HFE configuration. Flux expanded configurations have been experimentally realized both in ohmic and heated plasma with and without nitrogen seeding. Preliminary results on the effects of the flux expansion variation on total power radiation increase will be also briefly discussed.
  •  
19.
  • Carralero, D., et al. (författare)
  • Recent progress towards a quantitative description of filamentary SOL transport
  • 2017
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 57:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A summary of recent results on filamentary transport, mostly obtained with the ASDEX-Upgrade tokamak (AUG), is presented and discussed in an attempt to produce a coherent picture of scrape-off layer (SOL) filamentary transport. A clear correlation is found between L-mode density shoulder formation in the outer midplane and a transition between the sheath-limited and the inertial filamentary regimes. Divertor collisionality is found to be the parameter triggering the transition. A clear reduction of the ion temperature takes place in the far SOL after the transition, both for the background and the filaments. This coincides with a strong variation of the ion temperature distribution, which deviates from Gaussianity and becomes dominated by a strong peak below 5 eV. The filament transition mechanism triggered by a critical value of collisionality seems to be generally applicable to inter-ELM H-mode plasmas, although a secondary threshold related to deuterium fueling is observed. EMC3-EIRENE simulations of neutral dynamics show that an ionization front near the main chamber wall is formed after the shoulder formation. Finally, a clear increase of SOL opacity to neutrals is observed, associated with the shoulder formation. A common SOL transport framework is proposed to account for all these results, and their potential implications for future generation devices are discussed.
  •  
20.
  • Citrin, J., et al. (författare)
  • Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 59:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations x 10(6-7) faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are
  •  
21.
  • Craciunescu, Teddy, et al. (författare)
  • Maximum likelihood bolometric tomography for the determination of the uncertainties in the radiation emission on JET TOKAMAK
  • 2018
  • Ingår i: Review of Scientific Instruments. - : AMER INST PHYSICS. - 0034-6748 .- 1089-7623. ; 89:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The total emission of radiation is a crucial quantity to calculate the power balances and to understand the physics of any Tokamak. Bolometric systems are the main tool to measure this important physical quantity through quite sophisticated tomographic inversion methods. On the Joint European Torus, the coverage of the bolometric diagnostic, due to the availability of basically only two projection angles, is quite limited, rendering the inversion a very ill-posed mathematical problem. A new approach, based on the maximum likelihood, has therefore been developed and implemented to alleviate one of the major weaknesses of traditional tomographic techniques: the difficulty to determine routinely the confidence intervals in the results. The method has been validated by numerical simulations with phantoms to assess the quality of the results and to optimise the configuration of the parameters for the main types of emissivity encountered experimentally. The typical levels of statistical errors, which may significantly influence the quality of the reconstructions, have been identified. The systematic tests with phantoms indicate that the errors in the reconstructions are quite limited and their effect on the total radiated power remains well below 10%. A comparison with other approaches to the inversion and to the regularization has also been performed.
  •  
22.
  • Cufar, Aljaz, et al. (författare)
  • Modelling of the neutron production in a mixed beam DT neutron generator
  • 2018
  • Ingår i: Fusion engineering and design. - : ELSEVIER SCIENCE SA. - 0920-3796 .- 1873-7196. ; 136, s. 1089-1093
  • Tidskriftsartikel (refereegranskat)abstract
    • Compact DT neutron generators based on accelerators are often built on the principle of a mixed beam operation, meaning that deuterium (D) and tritium (T) are both present in the ion beam and in the target. Moreover, the beam consists of a mixture of ions and ionized molecules (D, T ions, and ionized D-D, T-T and D-T molecules) so the relevant source components come from T(d, n), D(t, n), D(d, n) and T(t, 2n) reactions at different ion energies. The method for assessing the relative amplitudes of different source components (DD, DT, TT) is presented. The assessment relies on the measurement of the neutron spectrum of different DT components (T(d, n) and D(t, n) at different energies) using a high resolution neutron spectrometer, e.g. a diamond detector, fusion reaction cross-sections, and simulations of neutron generation in the target. Through this process a complete description of the neutron source properties of the mixed beam neutron generator can be made and a neutron source description card, in a format suitable for Monte Carlo code MCNP, produced.
  •  
23.
  • Dal Molin, A., et al. (författare)
  • Development of a new compact gamma-ray spectrometer optimised for runaway electron measurements
  • 2018
  • Ingår i: Review of Scientific Instruments. - : AMER INST PHYSICS. - 0034-6748 .- 1089-7623. ; 89:10
  • Tidskriftsartikel (refereegranskat)abstract
    • A new compact gamma-ray spectrometer was developed in order to optimise the measurement of bremsstrahlung radiation emitted from runaway electrons in the MeV range. The detector is based on a cerium doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) scintillator coupled to a silicon photomultiplier and is insensitive to magnetic fields. Adedicated electronic board was developed to optimise the signal readout as well as for online control of the device. The detector combines a dynamic range up to 10 MeV with moderate energy non-linearity, counting rate capabilities in excess of 1 MHz, and an energy resolution that extrapolates to a few % in the MeV range, thus meeting the requirements for its application to runaway electron studies by bremsstrahlung measurements in the gamma-ray energy range.
  •  
24.
  • Darby-Lewis, D., et al. (författare)
  • Synthetic spectra of BeH, BeD and BeT for emission modeling in JET plasmas
  • 2018
  • Ingår i: Journal of Physics B. - : IOP PUBLISHING LTD. - 0953-4075 .- 1361-6455. ; 51:18
  • Tidskriftsartikel (refereegranskat)abstract
    • A theoretical model for isotopologues of beryllium monohydride, BeH, BeD and BeT, A (2)Pi to X (2)Sigma(+) visible and X (2)Sigma(+) to X (2)Sigma(+) infrared rovibronic spectra is presented. The MARVEL procedure is used to compute empirical rovibronic energy levels for BeH, BeD and BeT, using experimental transition data for the X (2)Sigma(+), A (2)Pi, and C (2)Sigma(+) states. The energy levels from these calculations are then used in the program Duo to produce a potential energy curve for the ground state, X (2)Sigma, and to fit an improved potential energy curve for the first excited state, A (2)Pi, including a spin-orbit coupling term, a A-doubling state to state (A-X states) coupling term, and Born-Oppenheimer breakdown terms for both curves. These, along with a previously computed ab initio dipole curve for the X and A states are used to generate vibrational-rotational wavefunctions, transition energies and A-values. From the transition energies and Einstein coefficients, accurate assigned synthetic spectra for BeH and its isotopologues are obtained at given rotational and vibrational temperatures. The BeH spectrum is compared with a high resolution hollow-cathode lamp spectrum and the BeD spectrum with high resolution spectra from JET giving effective vibrational and rotational temperatures. Full A-X and X-X line lists are given for BeH, BeD and BeT and provided as supplementary data on the ExoMol website.
  •  
25.
  • Drenik, A., et al. (författare)
  • Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG
  • 2017
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T170
  • Tidskriftsartikel (refereegranskat)abstract
    • The isotope content of the plasma reflects on the dynamics of isotope changeover experiments, efficiency of wall conditioning and the performance of a fusion device in the active phase of operation. The assessment of the isotope ratio of hydrogen and methane molecules is used as a novel method of assessing the plasma isotope ratios at JET and ASDEX-Upgrade (AUG). The isotope ratios of both molecules in general shows similar trends as the isotope ratio detected by other diagnostics. At JET, the absolute values of RGA signals are in relatively good agreement with each other and with spectroscopy data, while at AUG the deviation from neutral particle analyser data are larger, and the results show a consistent spatial distribution of the isotope ratio. It is further shown that the isotope ratio of the hydrogen molecule can be used to study the degree of dissociation of the injected gas during changeover experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 104

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy