SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhu Yangzhi) "

Sökning: WFRF:(Zhu Yangzhi)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Luo, Yifei, et al. (författare)
  • Technology Roadmap for Flexible Sensors
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:6, s. 5211-5295
  • Forskningsöversikt (refereegranskat)abstract
    • Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
  •  
2.
  • Kawakita, Satoru, et al. (författare)
  • Rapid integration of screen-printed electrodes into thermoplastic organ-on-a-chip devices for real-time monitoring of trans-endothelial electrical resistance
  • 2023
  • Ingår i: Biomedical microdevices (Print). - : Springer Nature. - 1387-2176 .- 1572-8781. ; 25:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Trans-endothelial electrical resistance (TEER) is one of the most widely used indicators to quantify the barrier integrity of endothelial layers. Over the last decade, the integration of TEER sensors into organ-on-a-chip (OOC) platforms has gained increasing interest for its efficient and effective measurement of TEER in OOCs. To date, microfabricated electrodes or direct insertion of wires has been used to integrate TEER sensors into OOCs, with each method having advantages and disadvantages. In this study, we developed a TEER-SPE chip consisting of carbon-based screen-printed electrodes (SPEs) embedded in a poly(methyl methacrylate) (PMMA)-based multi-layered microfluidic device with a porous poly(ethylene terephthalate) membrane in-between. As proof of concept, we demonstrated the successful cultures of hCMEC/D3 cells and the formation of confluent monolayers in the TEER-SPE chip and obtained TEER measurements for 4 days. Additionally, the TEER-SPE chip could detect changes in the barrier integrity due to shear stress or an inflammatory cytokine (i.e., tumor necrosis factor-& alpha;). The novel approach enables a low-cost and facile fabrication of carbon-based SPEs on PMMA substrates and the subsequent assembly of PMMA layers for rapid prototyping. Being cost-effective and cleanroom-free, our method lowers the existing logistical and technical barriers presenting itself as another step forward to the broader adoption of OOCs with TEER measurement capability.
  •  
3.
  •  
4.
  • Yi, Xin, et al. (författare)
  • Compound-specific radiocarbon analysis of benzene polycarboxylic acids for source apportionment of polyaromatic organic matter in ambient aerosols
  • 2023
  • Ingår i: Atmospheric Environment. - 1352-2310 .- 1873-2844. ; 307
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyaromatic organic matter (POM) is an important group of pollutants and light absorbers in ambient aerosols, which consists of a wide range of chemicals with fused benzene rings. POM in ambient aerosols is mainly derived from the incomplete combustion of fossil fuel and biomass. Source apportionment of POM is crucial for advising efficient mitigation of anthropogenic emissions, but that is a challenge due to the complicated composition of POM and ambient aerosols. Benzene polycarboxylic acids (BPCAs) have recently been introduced as molecular markers of atmospheric POM. Compound-specific radiocarbon analysis of BPCAs is expected to be a powerful tool for apportioning fossil sources and contemporary (i.e., biomass burning) sources of POM in ambient aero-sols, yet this application is still lacking. We developed a method for radiocarbon analysis of BPCAs substituted with 3-6 carboxylic groups (B6CA, B5CA, B4CAs and B3CAs). BPCAs were isolated with preparative liquid chromatography with high recoveries (>= 85%). The method is validated with reference materials with fossil and contemporary radiocarbon signatures. Successful radiocarbon analysis of BPCAs was achieved for these reference materials after correcting for the presence of average blanks (B6CA: 1.2 +/- 0.2 mu g, B5CA: 2.3 +/- 0.6 mu g, individual B4CAs: 2.7 +/- 0.2 mu g and individual B3CAs: 6.9 +/- 0.7 mu g). Source apportionment of POM based on radiocarbon
  •  
5.
  • Zhu, Yangzhi, et al. (författare)
  • A Microfluidic Contact Lens to Address Contact Lens-Induced Dry Eye
  • 2023
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 19:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The contact lens (CL) industry has made great strides in improving CL-wearing experiences. However, a large amount of CL wearers continue to experience ocular dryness, known as contact lens-induced dry eye (CLIDE), stemming from the reduction in tear volume, tear film instability, increased tear osmolarity followed by inflammation and resulting in ocular discomfort and visual disturbances. In this article, to address tear film thinning between the CL and the ocular surface, the concept of using a CL with microchannels to deliver the tears from the pre-lens tear film (PrLTF) to the post-lens ocular surface using in vitro eye-blink motion is investigated. This study reports an eye-blink mimicking system with microfluidic poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogel with integrated microchannels to demonstrate eye-blink assisted flow through microchannels. This in vitro experimental study provides a proof-of-concept result that tear transport from PrLTF to post-lens tear film can be enhanced by an artificial eyelid motion in a pressure range of 0.1–5 kPa (similar to human eyelid pressure) through poly(HEMA) microchannels. Simulation is conducted to support the hypothesis. This work demonstrates the feasibility of developing microfluidic CLs with the potential to help prevent or minimize CLIDE and discomfort by the enhanced transport of pre-lens tears to the post-lens ocular surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy