SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zuo Li) "

Sökning: WFRF:(Zuo Li)

  • Resultat 1-25 av 80
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kristan, Matej, et al. (författare)
  • The Sixth Visual Object Tracking VOT2018 Challenge Results
  • 2019
  • Ingår i: Computer Vision – ECCV 2018 Workshops. - Cham : Springer Publishing Company. - 9783030110086 - 9783030110093 ; , s. 3-53
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).
  •  
2.
  •  
3.
  • Kristan, Matej, et al. (författare)
  • The first visual object tracking segmentation VOTS2023 challenge results
  • 2023
  • Ingår i: 2023 IEEE/CVF International conference on computer vision workshops (ICCVW). - : Institute of Electrical and Electronics Engineers Inc.. - 9798350307443 - 9798350307450 ; , s. 1788-1810
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking Segmentation VOTS2023 challenge is the eleventh annual tracker benchmarking activity of the VOT initiative. This challenge is the first to merge short-term and long-term as well as single-target and multiple-target tracking with segmentation masks as the only target location specification. A new dataset was created; the ground truth has been withheld to prevent overfitting. New performance measures and evaluation protocols have been created along with a new toolkit and an evaluation server. Results of the presented 47 trackers indicate that modern tracking frameworks are well-suited to deal with convergence of short-term and long-term tracking and that multiple and single target tracking can be considered a single problem. A leaderboard, with participating trackers details, the source code, the datasets, and the evaluation kit are publicly available at the challenge website1
  •  
4.
  • Bhat, Goutam, et al. (författare)
  • NTIRE 2022 Burst Super-Resolution Challenge
  • 2022
  • Ingår i: 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2022). - : IEEE. - 9781665487399 - 9781665487405 ; , s. 1040-1060
  • Konferensbidrag (refereegranskat)abstract
    • Burst super-resolution has received increased attention in recent years due to its applications in mobile photography. By merging information from multiple shifted images of a scene, burst super-resolution aims to recover details which otherwise cannot be obtained using a simple input image. This paper reviews the NTIRE 2022 challenge on burst super-resolution. In the challenge, the participants were tasked with generating a clean RGB image with 4x higher resolution, given a RAW noisy burst as input. That is, the methods need to perform joint denoising, demosaicking, and super-resolution. The challenge consisted of 2 tracks. Track 1 employed synthetic data, where pixel-accurate high-resolution ground truths are available. Track 2 on the other hand used real-world bursts captured from a handheld camera, along with approximately aligned reference images captured using a DSLR. 14 teams participated in the final testing phase. The top performing methods establish a new state-of-the-art on the burst super-resolution task.
  •  
5.
  • Li, Shuqi, et al. (författare)
  • Rtt105 functions as a chaperone for replication protein A to preserve genome stability
  • 2018
  • Ingår i: EMBO Journal. - : Wiley-VCH Verlagsgesellschaft. - 0261-4189 .- 1460-2075. ; 37:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Generation of single-stranded DNA (ssDNA) is required for the template strand formation during DNA replication. Replication Protein A (RPA) is an ssDNA-binding protein essential for protecting ssDNA at replication forks in eukaryotic cells. While significant progress has been made in characterizing the role of the RPA-ssDNA complex, how RPA is loaded at replication forks remains poorly explored. Here, we show that the Saccharomyces cerevisiae protein regulator of Ty1 transposition 105 (Rtt105) binds RPA and helps load it at replication forks. Cells lacking Rtt105 exhibit a dramatic reduction in RPA loading at replication forks, compromised DNA synthesis under replication stress, and increased genome instability. Mechanistically, we show that Rtt105 mediates the RPA-importin interaction and also promotes RPA binding to ssDNA directly in vitro, but is not present in the final RPA-ssDNA complex. Single-molecule studies reveal that Rtt105 affects the binding mode of RPA to ssDNA These results support a model in which Rtt105 functions as an RPA chaperone that escorts RPA to the nucleus and facilitates its loading onto ssDNA at replication forks.
  •  
6.
  •  
7.
  • Huang, Hongyun, et al. (författare)
  • Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017)
  • 2018
  • Ingår i: Cell Transplantation. - : SAGE Publications. - 0963-6897 .- 1555-3892. ; 27:2, s. 310-324
  • Forskningsöversikt (refereegranskat)abstract
    • Cell therapy has been shown to be a key clinical therapeutic option for central nervous system diseases or damage. Standardization of clinical cell therapy procedures is an important task for professional associations devoted to cell therapy. The Chinese Branch of the International Association of Neurorestoratology (IANR) completed the first set of guidelines governing the clinical application of neurorestoration in 2011. The IANR and the Chinese Association of Neurorestoratology (CANR) collaborated to propose the current version "Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017)". The IANR council board members and CANR committee members approved this proposal on September 1, 2016, and recommend it to clinical practitioners of cellular therapy. These guidelines include items of cell type nomenclature, cell quality control, minimal suggested cell doses, patient-informed consent, indications for undergoing cell therapy, contraindications for undergoing cell therapy, documentation of procedure and therapy, safety evaluation, efficacy evaluation, policy of repeated treatments, do not charge patients for unproven therapies, basic principles of cell therapy, and publishing responsibility.
  •  
8.
  • Li, Yaohui, et al. (författare)
  • Improved efficiency of organic solar cell using MoS2 doped poly (3,4-ethylenedioxythiophene)(PEDOT) as hole transport layer
  • 2022
  • Ingår i: Applied Surface Science. - : ELSEVIER. - 0169-4332 .- 1873-5584. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • We report an efficient hole transporting layer (HTL) for organic solar cell (OSC) based on solution-processed organic-inorganic hybrid composed of ultrasonic-exfoliated MoS2 nanosheets and dopamine-copolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) derivative (DA-P). The OSCs based on this new hybrid HTL show a marked performance improvement over those with single-component HTLs, and they retain up to 80% of their original power conversion efficiency after 35 days. Our investigations reveal that the boost in performance is due to a synergistic effect that improves both hole transport and extraction ability. This effect is mainly due to the doping of exfoliated-MoS2 nanosheets on DA-P. We employ a comprehensive range of spectroscopies to uncover that the dopant is derived from the oxidation products of MoS2 nanosheets during the ultrasonic exfoliation. Our work demonstrates an efficient hybrid HTL and offers new insights into the interaction of exfoliated-MoS2 nanosheets and the PEDOT derivatives.
  •  
9.
  •  
10.
  • Chen, Shaoqing, et al. (författare)
  • Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO2–x/Cu toward Enhanced Activity for Preferential CO Oxidation
  • 2015
  • Ingår i: ACS Applied Materials & Interfaces. - 1944-8252 .- 1944-8244. ; 7:41, s. 22999-23007
  • Tidskriftsartikel (refereegranskat)abstract
    • Catalysts are urgently needed to remove the residual CO in hydrogen feeds through selective oxidation for large-scale applications of hydrogen proton exchange membrane fuel cells. We herein propose a new methodology that anchors high concentration oxygen vacancies at interface by designing a CeO2–x/Cu hybrid catalyst with enhanced preferential CO oxidation activity. This hybrid catalyst, with more than 6.1% oxygen vacancies fixed at the favorable interfacial sites, displays nearly 100% CO conversion efficiency in H2-rich streams over a broad temperature window from 120 to 210 °C, strikingly 5-fold wider than that of conventional CeO2/Cu (i.e., CeO2 supported on Cu) catalyst. Moreover, the catalyst exhibits a highest cycling stability ever reported, showing no deterioration after five cycling tests, and a super long-time stability beyond 100 h in the simulated operation environment that involves CO2 and H2O. On the basis of an arsenal of characterization techniques, we clearly show that the anchored oxygen vacancies are generated as a consequence of electron donation from metal copper atoms to CeO2 acceptor and the subsequent reverse spillover of oxygen induced by electron transfer in well controlled nanoheterojunction. The anchored oxygen vacancies play a bridging role in electron capture or transfer and drive molecule oxygen into active oxygen species to interact with the CO molecules adsorbed at interfaces, thus leading to an excellent preferential CO oxidation performance. This study opens a window to design a vast number of high-performance metal-oxide hybrid catalysts via the concept of anchoring oxygen vacancies at interfaces.
  •  
11.
  • He, Chengliang, et al. (författare)
  • Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%
  • 2022
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancing the luminescence property without sacrificing the charge collection is one key to high-performance organic solar cells (OSCs), while limited by the severe non-radiative charge recombination. Here, we demonstrate efficient OSCs with high luminescence via the design and synthesis of an asymmetric non-fullerene acceptor, BO-5Cl. Blending BO-5Cl with the PM6 donor leads to a record-high electroluminescence external quantum efficiency of 0.1%, which results in a low non-radiative voltage loss of 0.178 eV and a power conversion efficiency (PCE) over 15%. Importantly, incorporating BO-5Cl as the third component into a widely-studied donor:acceptor (D:A) blend, PM6:BO-4Cl, allows device displaying a high certified PCE of 18.2%. Our joint experimental and theoretical studies unveil that more diverse D:A interfacial conformations formed by asymmetric acceptor induce optimized blend interfacial energetics, which contributes to the improved device performance via balancing charge generation and recombination. High-performance organic solar cells call for novel designs of acceptor molecules. Here, He et al. design and synthesize a non-fullerene acceptor with an asymmetric structure for diverse donor:acceptor interfacial conformations and report a certificated power conversion efficiency of 18.2%.
  •  
12.
  • Ning, Haoran, et al. (författare)
  • Two-Dimensional and Subnanometer-Thin Quasi-Copper-Sulfide Semiconductor Formed upon Copper-Copper Bonding
  • 2021
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 15:1, s. 873-883
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrathin two-dimensional (2D) semiconductors exhibit outstanding properties, but it remains challenging to obtain monolayer-structured inorganic semiconductors naturally occurring as nonlayered crystals. Copper sulfides are a class of widely studied nonlayered metal chalcogenide semiconductors. Although 2D copper sulfides can provide extraordinary physical and chemical applications, investigations of 2D copper sulfides in the extreme quantum limit are constrained by the difficulty in preparing monolayered copper sulfides. Here, we report a subnanometer-thin quasi-copper-sulfide (q-CS) semiconductor formed upon self-assembly of copper(I)-dodecanethiol complexes. Extended X-ray absorption fine structure analysis revealed that the existence of Cu-Cu bonding endowed the layer-structured q-CS with semiconductor properties, such as appreciable interband photoluminescence. Theoretical studies on the band structure demonstrated that the optical properties of copper-dodecanethiol assemblies were dominated by the q-CS layer and the photoluminescence originated from exciton radiative recombination across an indirect band gap, borne out by experimental observation at higher temperatures, but with the onset of a direct emission process at cryogenic temperatures. The following studies revealed that the metal-metal bonding occurred not only in copper-alkanethiolate complex assemblies with variable alkyl chain length but also in silver-alkanethiolate and cadmium-alkanethiolate assemblies. Therefore, the current studies may herald a class of 2D semiconductors with extremely thin thickness out of nonlayered metal sulfides to bridge the gap between conventional inorganic semiconductors and organic semiconductors.
  •  
13.
  • Tong, Yang, et al. (författare)
  • Progress of the key materials for organic solar cells
  • 2020
  • Ingår i: Science in China Series B. - Beijing, China : SCIENCE PRESS. - 1674-7291 .- 1869-1870. ; 63:6, s. 758-765
  • Forskningsöversikt (refereegranskat)abstract
    • Organic solar cells have attracted academic and industrial interests due to the advantages like lightweight, flexibility and roll-to-roll fabrication. Nowadays, 18% power conversion efficiency has been achieved in the state-of-the-art organic solar cells. The recent rapid progress in organic solar cells relies on the continuously emerging new materials and device fabrication technologies, and the deep understanding on film morphology, molecular packing and device physics. Donor and acceptor materials are the key materials for organic solar cells since they determine the device performance. The past 25 years have witnessed an odyssey in developing high-performance donors and acceptors. In this review, we focus on those star materials and milestone work, and introduce the molecular structure evolution of key materials. These key materials include homopolymer donors, D-A copolymer donors, A-D-A small molecular donors, fullerene acceptors and nonfullerene acceptors. At last, we outlook the challenges and very important directions in key materials development.
  •  
14.
  • Zhang, Yuelan, et al. (författare)
  • Two-Step Grain-Growth Kinetics of Sub-7 nm SnO2 Nanocrystal under Hydrothermal Condition
  • 2015
  • Ingår i: Journal of Physical Chemistry C. - 1932-7447 .- 1932-7455. ; 119:33, s. 19505-19512
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, the grain growth kinetics of SnO2 quantum dots under hydrothermal conditions was investigated. By varying the reaction temperature and duration, SnO2 particle sizes were tuned from 2 to 7 nm. It is demonstrated that the growth behavior of subnanometer-sized SnO2 underwent two distinct processes: below the critical size of 5.5 nm, about double of Bohr radius, the grain growth kinetics obeys an Ostwald ripening mechanism, while above that, an oriented attachment process governs the particle growth. For the former cases, the activation energies were Ea1 = 61.94 kJ/mol at 200 °C and Ea1′ = 62.84 kJ/mol at 160 °C, which greatly differs from that of Ea2 = 131.32 kJ/mol for the latter case. High-resolution transmission electron microscope, X-ray diffraction as well as UV–vis diffuses reflectance, photoluminescence, Fourier transmission infrared, and Raman spectra were employed to reveal the size-dependent properties. As the particle size of SnO2 reduces, there occurred a lattice expansion, band gap broadening, and an abnormal blue shift. All these characteristics are closely related to the size changing in a narrow range from quantum dots to several nanometers. The findings reported here may shed light on further understanding the unique behaviors of quantum dots.
  •  
15.
  • Jin, Z., et al. (författare)
  • Increased ecohydrological drying over terrestrial ecosystems
  • 2022
  • Ingår i: Atmospheric Research. - : Elsevier BV. - 0169-8095. ; 277
  • Tidskriftsartikel (refereegranskat)abstract
    • The greening and browning of global vegetation are driven by various processes such as climate change, CO2 fertilization, and land management, etc. From the perspective of the vegetation-water-heat relationship, the above processes can be briefly summarized as two types of eco-hydrological processes: 1. dryness change; 2. usage change. We here present a diagnostic procedure to identify the dominant eco-hydrological processes, thus evaluate the climate change impacts on ecosystems. Utilizing remote-sensing based leaf area index (LAI) and climate data during 1982-2016, we demonstrate that dryness changes showed prior dominance over 1/4 global lands where LAI trends are significant. Concretely, drying/wetting has expanded/reduced its regional dominance from 8%/15.8% (1982-1999) to 18.1%/11.9% (1999-2016), indicating that dryness change has turned to more drying than wetting for global vegetated lands. As increased over twofold, drying is playing an increasingly important role in the climate change impacts on terrestrial ecosystems, bringing fundamental weakening of global greening.
  •  
16.
  • Li, Dong, et al. (författare)
  • Ionic switch controls the DNA state in phage λ.
  • 2015
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 1362-4962 .- 0305-1048. ; 43:13, s. 6348-6358
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently found that DNA packaged in phage λ undergoes a disordering transition triggered by temperature, which results in increased genome mobility. This solid-to-fluid like DNA transition markedly increases the number of infectious λ particles facilitating infection. However, the structural transition strongly depends on temperature and ionic conditions in the surrounding medium. Using titration microcalorimetry combined with solution X-ray scattering, we mapped both energetic and structural changes associated with transition of the encapsidated λ-DNA. Packaged DNA needs to reach a critical stress level in order for transition to occur. We varied the stress on DNA in the capsid by changing the temperature, packaged DNA length and ionic conditions. We found striking evidence that the intracapsid DNA transition is 'switched on' at the ionic conditions mimicking those in vivo and also at the physiologic temperature of infection at 37°C. This ion regulated on-off switch of packaged DNA mobility in turn affects viral replication. These results suggest a remarkable adaptation of phage λ to the environment of its host bacteria in the human gut. The metastable DNA state in the capsid provides a new paradigm for the physical evolution of viruses.
  •  
17.
  • Li, Xinghao, et al. (författare)
  • Porous organic polycarbene nanotrap for efficient and selective gold stripping from electronic waste
  • 2023
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of N-heterocyclic carbene, a well-known reactive site, in chemical catalysis has long been studied. However, its unique binding and electron-donating properties have barely been explored in other research areas, such as metal capture. Herein, we report the design and preparation of a poly(ionic liquid)-derived porous organic polycarbene adsorbent with superior gold-capturing capability. With carbene sites in the porous network as the “nanotrap”, it exhibits an ultrahigh gold recovery capacity of 2.09 g/g. In-depth exploration of a complex metal ion environment in an electronic waste-extraction solution indicates that the polycarbene adsorbent possesses a significant gold recovery efficiency of 99.8%. X-ray photoelectron spectroscopy along with nuclear magnetic resonance spectroscopy reveals that the high performance of the polycarbene adsorbent results from the formation of robust metal-carbene bonds plus the ability to reduce nearby gold ions into nanoparticles. Density functional theory calculations indicate that energetically favourable multinuclear Au binding enhances adsorption as clusters. Life cycle assessment and cost analysis indicate that the synthesis of polycarbene adsorbents has potential for application in industrial-scale productions. These results reveal the potential to apply carbene chemistry to materials science and highlight porous organic polycarbene as a promising new material for precious metal recovery.
  •  
18.
  • Li, Yongxi, et al. (författare)
  • A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset
  • 2016
  • Ingår i: NANO ENERGY. - : ELSEVIER SCIENCE BV. - 2211-2855. ; 27, s. 430-438
  • Tidskriftsartikel (refereegranskat)abstract
    • A non-fullerene electron acceptor bearing a novel backbone with fused 10-heterocyclic ring (in-dacenodithiopheno-indacenodiselenophene), denoted by IDTIDSe-IC is developed for fullerene free polymer solar cells. IDTIDSe-IC exhibits a low band gap (E-g=1.52 eV) and strong absorption in the 600850 nm region. Combining with a large band gap polymer J51 (E-g=1.91 eV) as donor, broad absorption coverage from 300 nm to 800 nm is obtained due to complementary absorption of J51 and IDTIDSe-IC, which enables a high PCE of 8.02% with a V-oc of 0.91 V, a J(SC) of 15.16 mA/cm(2) and a FF of 58.0% in the corresponding PSCs. Moreover, the EQE of 50-65% is achieved in the absorption range of IDTIDSe-IC with only about 0.1 eV HOMO difference between J51 and IDTIDSe-IC. (C) 2016 Elsevier Ltd. All rights reserved.
  •  
19.
  • Li, Yaohui, et al. (författare)
  • An n-n Heterojunction Configuration for Efficient Electron Transport in Organic Photovoltaic Devices
  • 2023
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 33:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective electron transport and extraction are essential to the operation of photovoltaic devices. Electron transport layer (ETL) is therefore critical to organic photovoltaics (OPV). Herein, an ETL configuration is presented comprising a solution-processed n-n organic heterojunction to enhance electron transport and hole blocking, and boost power conversion efficiency (PCE) in OPV. Specifically, the n-n heterojunction is constructed by stacking a narrow-band n-type conjugated polymer layer (PNDIT-F3N) and a wide-band n-type conjugated molecule layer (Phen-NaDPO). Based on the ultraviolet photoelectron spectroscopy measurement and numerical simulation of current density-voltage characteristics, the formation of the built-in potential is investigated. In three OPVs with different active layers, substantial improvements are observed in performance following the introduction of this ETL configuration. The performance enhancement arises from the combination of selective carrier transport properties and reduced recombination. Another contributing factor is the good film-forming quality of the new ETL configuration, where the surface energies of the related materials are well-matched. The n-n organic heterojunction represents a viable and promising ETL construction strategy for efficient OPV devices.
  •  
20.
  • Li, Yaokai, et al. (författare)
  • Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: from molecule to device
  • 2022
  • Ingår i: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706. ; 15:2, s. 855-865
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-component organic photovoltaics (OPVs), e.g., ternary blends, are effective for high performance, while the fundamental understanding from the molecular to device level is lacking. To address this issue, we here systematically study the working mechanism of ternary OPVs based on non-fullerene acceptors (NFAs). With both molecular dynamics simulations and morphology characterization, we identify that when adding another larger band gap and highly miscible NFA, namely IT-4F or BTP-S2, into the PBDB-TF:BTP-eC9 blend, the NFAs undergo molecular intermixing selectively with BTP-eC9. This causes the composition-dependent band gap and charge recombination, and hence the composition-dependent V-OC. While the charge recombination still dominantly occurs at the PBDB-TF:BTP-eC9 interface, BTP-S2 or IT-4F plays an auxiliary role in facilitating charge transfer and suppressing non-radiative decay. Interestingly, intermolecular end-group packing in the intermixed blend is improved compared to that in pristine films, leading to higher carrier mobility. These synergistic effects significantly improve the power conversion efficiency of the device to an outstanding value of 18.7% (certified value of 18.3%).
  •  
21.
  • Li, Yongxi, et al. (författare)
  • Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 4:16, s. 5890-5897
  • Tidskriftsartikel (refereegranskat)abstract
    • A non-fullerene electron acceptor bearing a fused 10-heterocyclic ring (indacenodithiophenoindacenodithiophene) with a narrow band gap (similar to 1.5 eV) was designed and synthesized. It possesses excellent planarity and enhanced effective conjugation length compared to previously reported fused-ring electron acceptors. When this acceptor was paired with PTB7-Th and applied in polymer solar cells, a power conversion efficiency of 6.5% was achieved with a high open circuit voltage of 0.94 V. More significantly, an energy loss as low as 0.59 eV and an external quantum efficiency as high as 63% were obtained simultaneously.
  •  
22.
  •  
23.
  • Su, Linjia, et al. (författare)
  • GRP75-driven, cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles underlies distinct gene therapy effect in ovarian cancer
  • 2022
  • Ingår i: Journal of Nanobiotechnology. - : Springer Nature. - 1477-3155. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Practice of tumor-targeted suicide gene therapy is hampered by unsafe and low efficient delivery of plasmid DNA (pDNA). Using HIV-Tat-derived peptide (Tat) to non-covalently form Tat/pDNA complexes advances the delivery performance. However, this innovative approach is still limited by intracellular delivery efficiency and cell-cycle status. In this study, Tat/pDNA complexes were further condensed into smaller, nontoxic nanoparticles by Ca2+ addition. Formulated Tat/pDNA-Ca2+ nanoparticles mainly use macropinocytosis for intercellular delivery, and their macropinocytic uptake was persisted in mitosis (M-) phase and highly activated in DNA synthesis (S-) phase of cell-cycle. Over-expression or phosphorylation of a mitochondrial chaperone, 75-kDa glucose-regulated protein (GRP75), promoted monopolar spindle kinase 1 (MPS1)-controlled centrosome duplication and cell-cycle progress, but also driven cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles. Further in vivo molecular imaging based on DF (Fluc-eGFP)-TF (RFP-Rluc-HSV-ttk) system showed that Tat/pDNA-Ca2+ nanoparticles exhibited highly suicide gene therapy efficiency in mouse model xenografted with human ovarian cancer. Furthermore, arresting cell-cycle at S-phase markedly enhanced delivery performance of Tat/pDNA-Ca2+ nanoparticles, whereas targeting GRP75 reduced their macropinocytic delivery. More importantly, in vivo targeting GRP75 combined with cell-cycle or macropinocytosis inhibitors exhibited distinct suicide gene therapy efficiency. In summary, our data highlight that mitochondrial chaperone GRP75 moonlights as a biphasic driver underlying cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles in ovarian cancer.
  •  
24.
  • Sun, M. D., et al. (författare)
  • New short-lived isotope 223Np and the absence of the Z = 92 subshell closure near N = 126
  • 2017
  • Ingår i: Physics Letters B. - : Elsevier. - 0370-2693 .- 1873-2445. ; 771, s. 303-308
  • Tidskriftsartikel (refereegranskat)abstract
    • The N=130 short-lived isotope 223Np was produced as evaporation residue (ER) in the fusion reaction 40Ar + 187Re at the gas-filled recoil separator Spectrometer for Heavy Atom and Nuclear Structure (SHANS). It was identified through temporal and spatial correlations with α decays of 215Ac and/or 211Fr, the third and fourth members of the α-decay chain starting from 223Np. The pileup signals of ER(223Np)–α(223Np)–α(219Pa) were resolved by using the digital pulse processing technique. An α decay with half-life of T1/2=2.15(52100) μs and energy of Eα=9477(44) keV was attributed to 223Np. Spin and parity of 9/2− were tentatively proposed for the ground state of 223Np by combining the reduced α-decay width and large-scale shell-model calculations. This assignment together with the proton separation energy disprove the existence of a Z=92 subshell closure.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 80

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy