SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(de Mello Vanessa D.) "

Search: WFRF:(de Mello Vanessa D.)

  • Result 1-18 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Williamson, Alice, et al. (author)
  • Genome-wide association study and functional characterization identifies candidate genes for insulin-stimulated glucose uptake
  • 2023
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 55:6, s. 973-983
  • Journal article (peer-reviewed)abstract
    • Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in >55,000 participants from three ancestry groups. We identified ten new loci (P < 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits.
  •  
2.
  • Dayeh, Tasnim, et al. (author)
  • DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk
  • 2016
  • In: Epigenetics. - : Informa UK Limited. - 1559-2294 .- 1559-2308. ; 11:7, s. 482-488
  • Journal article (peer-reviewed)abstract
    • Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02–1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75–0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c, fasting insulin, and triglyceride levels, and was increased in adipose tissue and blood from the diabetic twin among monozygotic twin pairs discordant for T2D. DNA methylation at the PHOSPHO1 locus cg02650017 in blood correlated positively with HDL levels, and was decreased in skeletal muscle from diabetic vs. non-diabetic monozygotic twins. DNA methylation of cg18181703 (SOCS3), cg11024682 (SREBF1), and cg19693031 (TXNIP) was not associated with future T2D risk in subjects from the Botnia prospective study.
  •  
3.
  • de Mello, Vanessa D. F., et al. (author)
  • The effect of fatty or lean fish intake on inflammatory gene expression in peripheral blood mononuclear cells of patients with coronary heart disease
  • 2009
  • In: European Journal of Nutrition. - : Steinkopff-Verlag. - 1436-6207 .- 1436-6215. ; 48:8, s. 447-455
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Little is known about the effect of fish consumption on gene expression of inflammation-related genes in immune cells in coronary heart disease (CHD).AIM OF THE STUDY: We sought to evaluate the effect of a fatty fish (FF) or a lean fish (LF) diet on the modulation of inflammatory and endothelial function-related genes in peripheral blood mononuclear cells (PBMCs) of subjects with CHD, and its association with serum fatty acid (FA) profile and lipid metabolic compounds.METHODS: Data from 27 patients randomized into an 8-week FF (n = 10; mean +/- SD: 4.3 +/- 0.4 portions of fish per week), LF (n = 11; 4.7 +/- 1.1 portions of fish per week), or control diet (n = 6; 0.6 +/- 0.4 portions of fish per week) were analyzed. The mRNA expression was measured using real-time PCR.RESULTS: The effect of the intervention on the mRNA expression of the genes studied did not differ among groups. In the FF group, however, the decrease in arachidonic acid to eicosapentaenoic acid (AA:EPA) ratio in cholesterol ester and phospholipid fractions strongly correlated with the change in IL1B mRNA levels (r (s) = 0.60, P = 0.06 and r (s) = 0.86, P = 0.002, respectively). In the LF group, the decrease in palmitic acid and total saturated FAs in cholesterol esters correlated with the change in intercellular cell adhesion molecule-1 (ICAM1) expression (r (s) = 0.64, P = 0.04 for both). Circulating levels of soluble ICAM-1 decreased only in the LF group (P < 0.05).CONCLUSIONS: The intake of FF or LF diet did not alter the expression of inflammatory and endothelial function-related genes in PBMCs of patients with CHD. However, the decrease in AA:EPA ratio in serum lipids in the FF group may induce an anti-inflammatory response at mRNA levels in PBMCs. A LF diet might benefit endothelial function, possibly mediated by the changes in serum FA composition.
  •  
4.
  • de Mello, Vanessa D., et al. (author)
  • Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study
  • 2017
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Journal article (peer-reviewed)abstract
    • Wide-scale profiling technologies including metabolomics broaden the possibility of novel discoveries related to the pathogenesis of type 2 diabetes (T2D). By applying non-targeted metabolomics approach, we investigated here whether serum metabolite profile predicts T2D in a well-characterized study population with impaired glucose tolerance by examining two groups of individuals who took part in the Finnish Diabetes Prevention Study (DPS); those who either early developed T2D (n = 96) or did not convert to T2D within the 15-year follow-up (n = 104). Several novel metabolites were associated with lower likelihood of developing T2D, including indole and lipid related metabolites. Higher indolepropionic acid was associated with reduced likelihood of T2D in the DPS. Interestingly, in those who remained free of T2D, indolepropionic acid and various lipid species were associated with better insulin secretion and sensitivity, respectively. Furthermore, these metabolites were negatively correlated with low-grade inflammation. We replicated the association between indolepropionic acid and T2D risk in one Finnish and one Swedish population. We suggest that indolepropionic acid, a gut microbiota-produced metabolite, is a potential biomarker for the development of T2D that may mediate its protective effect by preservation of alpha-cell function. Novel lipid metabolites associated with T2D may exert their effects partly through enhancing insulin sensitivity.
  •  
5.
  • de Mello, Vanessa D., et al. (author)
  • Serum aromatic and branched-chain amino acids associated with NASH demonstrate divergent associations with serum lipids
  • 2021
  • In: Liver International. - : Wiley. - 1478-3223 .- 1478-3231. ; 41:4, s. 754-763
  • Journal article (peer-reviewed)abstract
    • Background & Aims: Non-alcoholic fatty liver disease (NAFLD) has been associated with multiple metabolic abnormalities. By applying a non-targeted metabolomics approach, we aimed at investigating whether serum metabolite profile that associates with NAFLD would differ in its association with NAFLD-related metabolic risk factors. Methods & Results: A total of 233 subjects (mean ± SD: 48.3 ± 9.3 years old; BMI: 43.1 ± 5.4 kg/m2; 64 male) undergoing bariatric surgery were studied. Of these participants, 164 with liver histology could be classified as normal liver (n = 79), simple steatosis (SS, n = 40) or non-alcoholic steatohepatitis (NASH, n = 45). Among the identified fasting serum metabolites with higher levels in those with NASH when compared to those with normal phenotype were the aromatic amino acids (AAAs: tryptophan, tyrosine and phenylalanine), the branched-chain amino acids (BCAAs: leucine and isoleucine), a phosphatidylcholine (PC(16:0/16:1)) and uridine (all FDRp < 0.05). Only tryptophan was significantly higher in those with NASH compared to those with SS (FDRp < 0.05). Only the AAAs tryptophan and tyrosine correlated positively with serum total and LDL cholesterol (FDRp < 0.1), and accordingly, with liver LDLR at mRNA expression level. In addition, tryptophan was the single AA associated with liver DNA methylation of CpG sites known to be differentially methylated in those with NASH. Conclusions: We found that serum levels of the NASH-related AAAs and BCAAs demonstrate divergent associations with serum lipids. The specific correlation of tryptophan with LDL-c may result from the molecular events affecting LDLR mRNA expression and NASH-associated methylation of genes in the liver.
  •  
6.
  •  
7.
  • García-Calzón, Sonia, et al. (author)
  • Sex Differences in the Methylome and Transcriptome of the Human Liver and Circulating HDL-Cholesterol Levels
  • 2018
  • In: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 103:12, s. 4395-4408
  • Journal article (peer-reviewed)abstract
    • Context: Epigenetics may contribute to sex-specific differences in human liver metabolism. Objective: To study the impact of sex on DNA methylation and gene expression in human liver. Design/Setting: Cross-sectional, Kuopio Obesity Surgery Study. Participants/Intervention: We analyzed DNA methylation with the Infinium HumanMethylation450 BeadChip in liver of an obese population (34 males, 61 females). Females had a higher high-density lipoprotein (HDL)-cholesterol levels compared with males. Gene expression was measured with the HumanHT-12 Expression BeadChip in a subset of 42 participants. Results: Females displayed higher average methylation in the X-chromosome, whereas males presented higher methylation in autosomes. We found 9455 CpG sites in the X-chromosome and 33,205 sites in autosomes with significant methylation differences in liver between sexes (q < 0.05). When comparing our findings with published studies, 95% of the sex-specific differences in liver methylation in the X-chromosome were also found in pancreatic islets and brain, and 26 autosomal sites showed sex-specific methylation differences in the liver as well as in other human tissues. Furthermore, this sex-specific methylation profile in liver was associated with hepatic gene expression changes between males and females. Notably, females showed higher HDL-cholesterol levels, which were associated with higher KDM6A expression and epigenetic differences in human liver. Accordingly, silencing of KDM6A in cultured liver cells reduced HDL-cholesterol levels and APOA1 expression, which is a major component of HDL particles. Conclusions: Human liver has a sex-specific methylation profile in both the X-chromosome and autosomes, which associates with hepatic gene expression changes and HDL-cholesterol. We identified KDM6A as a novel target that regulates HDL-cholesterol levels.
  •  
8.
  •  
9.
  • Leder, Lena, et al. (author)
  • Effects of a healthy Nordic diet on gene expression changes in peripheral blood mononuclear cells in response to an oral glucose tolerance test in subjects with metabolic syndrome : A SYSDIET sub-study
  • 2016
  • In: Genes & Nutrition. - : Springer Science and Business Media LLC. - 1555-8932 .- 1865-3499. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Background: Diet has a great impact on the risk of developing features of metabolic syndrome (MetS), type 2 diabetes mellitus (T2DM), and cardiovascular diseases (CVD). We evaluated whether a long-term healthy Nordic diet (ND) can modify the expression of inflammation and lipid metabolism-related genes in peripheral blood mononuclear cells (PBMCs) during a 2-h oral glucose tolerance test (OGTT) in individuals with MetS. Methods: A Nordic multicenter randomized dietary study included subjects (n = 213) with MetS, randomized to a ND group or a control diet (CD) group applying an isocaloric study protocol. In this sub-study, we included subjects (n = 89) from three Nordic centers: Kuopio (n =26), Lund (n = 30), and Oulu (n = 33) with a maximum weight change of ±4 kg, high-sensitivity C-reactive protein concentration ≤10 mg L-1, and baseline body mass index -2. PBMCs were isolated, and the mRNA gene expression analysis was measured by quantitative real-time polymerase chain reaction (qPCR). We analyzed the mRNA expression changes of 44 genes before and after a 2hOGTT at the beginning and the end of the intervention. Results: The healthy ND significantly down-regulated the expression of toll-like receptor 4 (TLR4), interleukin 18 (IL18), and thrombospondin receptor (CD36) mRNA transcripts and significantly up-regulated the expression of peroxisome proliferator-activated receptor delta (PPARD) mRNA transcript after the 2hOGTT compared to the CD. Conclusions: A healthy ND is able to modify the gene expression in PBMCs after a 2hOGTT. However, more studies are needed to clarify the biological and clinical relevance of these findings.
  •  
10.
  • Murphy, Rachel A, et al. (author)
  • Omega-3 and omega-6 polyunsaturated fatty acid biomarkers and sleep : a pooled analysis of cohort studies On behalf of the Fatty Acids and Outcomes Research Consortium (FORCE).
  • 2022
  • In: American Journal of Clinical Nutrition. - : Oxford University Press (OUP). - 0002-9165 .- 1938-3207. ; 115:3, s. 864-876
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: n-3 and n-6 polyunsaturated fatty acids (PUFAs) have physiologic roles in sleep processes, but little is known regarding circulating n-3 and n-6 PUFA and sleep parameters.OBJECTIVES: To assess associations between biomarkers of n-3 and n-6 PUFA intake with self-reported sleep duration and difficulty falling sleeping in the Fatty Acids and Outcome Research Consortium.METHODS: Harmonized, de novo, individual-level analyses were performed and pooled across 12 cohorts. Participants were between 35 to 96 years old and from 5 nations. Circulating measures included alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), EPA + DPA + DHA, linoleic acid and arachidonic acid. Sleep duration (10 cohorts, N = 18,791) was categorized as short (≤6 hours), 7-8 hours (reference) or long (9 + hours). Difficulty falling sleeping (8 cohorts, N = 12,500) was categorized as yes or no. Associations between PUFAs, sleep duration, and difficulty falling sleeping were assessed by cross-sectional multinomial logistic regression using standardized protocols and covariates. Cohort-specific multivariable-adjusted odds ratios (ORs) per quintile of PUFAs were pooled with inverse-variance weighted meta-analysis.RESULTS: In pooled analysis adjusted for sociodemographics and health status, participants with higher very long-chain n-3 PUFAs were less likely to have long sleep duration. Comparing top vs. bottom quintiles, the multivariable-adjusted OR (95% confidence interval, CI) for long-sleep was 0.78 (0.65, 0.95) for DHA and for EPA + DPA + DHA, 0.76 (0.63, 0.93). Significant associations were not identified for ALA and n-6 PUFA with short sleep duration, or difficulty falling sleeping.CONCLUSIONS: Participants with higher levels of very long-chain n-3 PUFAs were less likely to have long sleep duration. While objective biomarkers reduce recall bias and misclassification, the cross-sectional design limits assessment of the temporal nature of this relationship. These novel findings across 12 cohorts highlight the need for experimental and biological assessments of very long-chain n-3 PUFAs and sleep duration.
  •  
11.
  • Myhrstad, Mari C. W., et al. (author)
  • Healthy Nordic Diet Modulates the Expression of Genes Related to Mitochondrial Function and Immune Response in Peripheral Blood Mononuclear Cells from Subjects with Metabolic Syndrome-A SYSDIET Sub-Study
  • 2019
  • In: Molecular Nutrition & Food Research. - : John Wiley & Sons. - 1613-4125 .- 1613-4133. ; 63:13
  • Journal article (peer-reviewed)abstract
    • Scope To explore the effect of a healthy Nordic diet on the global transcriptome profile in peripheral blood mononuclear cells (PBMCs) of subjects with metabolic syndrome. Methods and results Subjects with metabolic syndrome undergo a 18/24 week randomized intervention study comparing an isocaloric healthy Nordic diet with an average habitual Nordic diet served as control (SYSDIET study). Altogether, 68 participants are included. PBMCs are obtained before and after intervention and total RNA is subjected to global transcriptome analysis. 1302 probe sets are differentially expressed between the diet groups (p-value < 0.05). Twenty-five of these are significantly regulated (FDR q-value < 0.25) and are mainly involved in mitochondrial function, cell growth, and cell adhesion. The list of 1302 regulated probe sets is subjected to functional analyses. Pathways and processes involved in the mitochondrial electron transport chain, immune response, and cell cycle are downregulated in the healthy Nordic diet group. In addition, gene transcripts with common motifs for 42 transcription factors, including NFR1, NFR2, and NF-kappa B, are downregulated in the healthy Nordic diet group. Conclusion These results suggest that benefits of a healthy diet may be mediated by improved mitochondrial function and reduced inflammation.
  •  
12.
  • Nilsson, Emma A, et al. (author)
  • Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels.
  • 2015
  • In: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 100:11, s. 1491-1501
  • Journal article (peer-reviewed)abstract
    • Epigenetic variation may contribute to the development of complex metabolic diseases such as type 2 diabetes (T2D). Hepatic insulin resistance is a hallmark of T2D. However, it remains unknown if epigenetic alterations take place in the liver from diabetic subjects. Therefore, we investigated the genome-wide DNA methylation pattern in the liver from subjects with T2D and non-diabetic controls and related epigenetic alterations to gene expression and circulating folate levels.
  •  
13.
  • Qian, Frank, et al. (author)
  • n-3 Fatty Acid Biomarkers and Incident Type 2 Diabetes : An Individual Participant-Level Pooling Project of 20 Prospective Cohort Studies
  • 2021
  • In: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 44:5, s. 1133-1142
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE Prospective associations between n-3 fatty acid biomarkers and type 2 diabetes (T2D) risk are not consistent in individual studies. We aimed to summarize the prospective associations of biomarkers of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with T2D risk through an individual participant-level pooled analysis.RESEARCH DESIGN AND METHODS For our analysis we incorporated data from a global consortium of 20 prospective studies from 14 countries. We included 65,147 participants who had blood measurements of ALA, EPA, DPA, or DHA and were free of diabetes at baseline. De novo harmonized analyses were performed in each cohort following a pre-specified protocol, and cohort-specific associations were pooled using inverse variance-weighted meta-analysis.RESULTS A total of 16,693 incident T2D cases were identified during follow-up (median follow-up ranging from 2.5 to 21.2 years). In pooled multivariable analysis, per interquintile range (difference between the 90th and 10th percentiles for each fatty acid), EPA, DPA, DHA, and their sum were associated with lower T2D incidence, with hazard ratios (HRs) and 95% CIs of 0.92 (0.87, 0.96), 0.79 (0.73, 0.85), 0.82 (0.76, 0.89), and 0.81 (0.75, 0.88), respectively (all P < 0.001). ALA was not associated with T2D (HR 0.97 [95% CI 0.92, 1.02]) per interquintile range. Associations were robust across prespecified subgroups as well as in sensitivity analyses.CONCLUSIONS Higher circulating biomarkers of seafood-derived n-3 fatty acids, including EPA, DPA, DHA, and their sum, were associated with lower risk of T2D in a global consortium of prospective studies. The biomarker of plant-derived ALA was not significantly associated with T2D risk.
  •  
14.
  • Sehgal, Ratika, et al. (author)
  • Liver saturated fat content associates with hepatic DNA methylation in obese individuals
  • 2023
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Background: Accumulation of saturated fatty acids (SFAs) in the liver is known to induce hepatic steatosis and inflammation causing non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Although SFAs have been shown to affect the epigenome in whole blood, pancreatic islets, and adipose tissue in humans, and genome-wide DNA methylation studies have linked epigenetic changes to NAFLD and NASH, studies focusing on the association of SFAs and DNA methylation in human liver are missing. We, therefore, investigated whether human liver SFA content associates with DNA methylation and tested if SFA-linked alterations in DNA methylation associate with NAFLD-related clinical phenotypes in obese individuals. Results: We identified DNA methylation (Infinium HumanMethylation450 BeadChip) of 3169 CpGs to be associated with liver total SFA content (q-value < 0.05) measured using proton NMR spectroscopy in participants of the Kuopio Obesity Surgery Study (n = 51; mean ± SD:49.3 ± 8.5 years old; BMI:43.7 ± 6.2 kg/m2). Of these 3169 sites, 797 overlapped with previously published NASH-associated CpGs (NASH-SFA), while 2372 CpGs were exclusively associated with SFA (Only-SFA). The corresponding annotated genes of these only-SFA CpGs were found to be enriched in pathways linked to satiety and hunger. Among the 54 genes mapping to these enriched pathways, DNA methylation of CpGs mapping to PRKCA and TSPO correlated with their own mRNA expression (HumanHT-12 Expression BeadChip). In addition, DNA methylation of another ten of these CpGs correlated with the mRNA expression of their neighboring genes (p value < 0.05). The proportion of CpGs demonstrating a correlation of DNA methylation with plasma glucose was higher in NASH-SFA and only-SFA groups, while the proportion of significant correlations with plasma insulin was higher in only-NASH and NASH-SFA groups as compared to all CpGs on the Illumina 450 K array (Illumina, San Diego, CA, USA). Conclusions: Our results suggest that one of the mechanisms how SFA could contribute to metabolic dysregulation in NAFLD is at the level of DNA methylation. We further propose that liver SFA-related DNA methylation profile may contribute more to hyperglycemia, while insulin-related methylation profile is more linked to NAFLD or NASH. Further research is needed to elucidate the molecular mechanisms behind these observations.
  •  
15.
  •  
16.
  •  
17.
  • U-Din, Mueez, et al. (author)
  • Cold-stimulated brown adipose tissue activation is related to changes in serum metabolites relevant to NAD + metabolism in humans
  • 2023
  • In: Cell Reports. - 2211-1247. ; 42:9
  • Journal article (peer-reviewed)abstract
    • Cold-induced brown adipose tissue (BAT) activation is considered to improve metabolic health. In murine BAT, cold increases the fundamental molecule for mitochondrial function, nicotinamide adenine dinucleotide (NAD+), but limited knowledge of NAD+ metabolism during cold in human BAT metabolism exists. We show that cold increases the serum metabolites of the NAD+ salvage pathway (nicotinamide and 1-methylnicotinamide) in humans. Additionally, individuals with cold-stimulated BAT activation have decreased levels of metabolites from the de novo NAD+ biosynthesis pathway (tryptophan, kynurenine). Serum nicotinamide correlates positively with cold-stimulated BAT activation, whereas tryptophan and kynurenine correlate negatively. Furthermore, the expression of genes involved in NAD+ biosynthesis in BAT is related to markers of metabolic health. Our data indicate that cold increases serum tryptophan conversion to nicotinamide to be further utilized by BAT. We conclude that NAD+ metabolism is activated upon cold in humans and is probably regulated in a coordinated fashion by several tissues.
  •  
18.
  • Ulven, Stine M., et al. (author)
  • An isocaloric nordic diet modulates rela and tnfrsf1a gene expression in peripheral blood mononuclear cells in individuals with metabolic syndrome—a sysdiet sub-study
  • 2019
  • In: Nutrients. - : MDPI AG. - 2072-6643. ; 11:12
  • Journal article (peer-reviewed)abstract
    • A healthy dietary pattern is associated with a lower risk of metabolic syndrome (MetS) and reduced inflammation. To explore this at the molecular level, we investigated the effect of a Nordic diet (ND) on changes in the gene expression profiles of inflammatory and lipid-related genes in peripheral blood mononuclear cells (PBMCs) of individuals with MetS. We hypothesized that the intake of an ND compared to a control diet (CD) would alter the expression of inflammatory genes and genes involved in lipid metabolism. The individuals with MetS underwent an 18/24-week randomized intervention to compare a ND with a CD. Eighty-eight participants (66% women) were included in this sub-study of the larger SYSDIET study. Fasting PBMCs were collected before and after the intervention and changes in gene expression levels were measured using TaqMan Array Micro Fluidic Cards. Forty-eight pre-determined inflammatory and lipid related gene transcripts were analyzed. The expression level of the gene tumor necrosis factor (TNF) receptor superfamily member 1A (TNFRSF1A) was down-regulated (p = 0.004), whereas the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunit, RELA proto-oncogene, was up-regulated (p = 0.016) in the ND group compared to the CD group. In conclusion, intake of an ND in individuals with the MetS may affect immune function.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-18 of 18
Type of publication
journal article (15)
other publication (3)
Type of content
peer-reviewed (15)
other academic/artistic (3)
Author/Editor
de Mello, Vanessa D. (16)
Uusitupa, Matti (11)
Pihlajamäki, Jussi (8)
Perfilyev, Alexander (5)
Ling, Charlotte (5)
Risérus, Ulf, 1967- (4)
show more...
Tuomilehto, Jaakko (4)
Kolehmainen, Marjukk ... (4)
Lind, Lars (3)
Arner, Peter (3)
Karlsson, Mats O. (3)
Dahlman, Ingrid (3)
Åkesson, Björn (3)
Þórsdóttir, Inga (3)
Schwab, Ursula (3)
Hermansen, Kjeld (3)
Herzig, Karl-Heinz (3)
Carlberg, Carsten (3)
Cloetens, Lieselotte (3)
Poutanen, Kaisa S. (3)
Savolainen, Markku J ... (3)
Dragsted, Lars O (3)
Paananen, Jussi (3)
Lindström, Jaana (3)
Hukkanen, Janne (3)
Ulven, Stine M. (3)
Nilsson, Emma (2)
Tuomi, Tiinamaija (2)
Risérus, Ulf (2)
Marklund, Matti (2)
Mozaffarian, Dariush (2)
Laakso, Markku (2)
Kjellsson, Maria C. (2)
Lemaitre, Rozenn N. (2)
Rosqvist, Fredrik, 1 ... (2)
Virtanen, Jyrki K. (2)
Hanhineva, Kati (2)
Harris, William S. (2)
Nilsson, Emma A (2)
de Mello, Vanessa D. ... (2)
Lankinen, Maria (2)
Lehtonen, Marko (2)
Sehgal, Ratika (2)
Männistö, Ville (2)
Klåvus, Anton (2)
Käkelä, Pirjo (2)
Murphy, Rachel A (2)
Shadyab, Aladdin H. (2)
Tintle, Nathan (2)
Wood, Alexis C. (2)
show less...
University
Uppsala University (10)
Lund University (9)
Karolinska Institutet (4)
Chalmers University of Technology (2)
Umeå University (1)
Örebro University (1)
show more...
Swedish University of Agricultural Sciences (1)
show less...
Language
English (18)
Research subject (UKÄ/SCB)
Medical and Health Sciences (17)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view